
UNCLASSIFIED Copy 1 7 of 49 copies

AD-A261 941

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut

Bill Brykczynski, Task Leader

" DTIC
December 1992 ELECTE

W-- MAR2 4 19935

E

Prepaned for
Strategic Defense Initiative Organization

Approvd for public release. unlimited distribution. January 13, 1993.

9 3 23 045 93-06000
INSTITUTE FOR DEFt_,rN, A1NALYSI-N
1801 N. Beauregard Street, Alexandria. Virgini 22311-1772

UNCLASSIFIED 10A Log No. NO 92-042571

e0

DEFINITIONS
IDA publishes the following documents to rpport the results of Its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in sope than those covered in Reports. IDA Papers am reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studios, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under cooftrct MO& g03 82 C GM0 ter
Ohe Department of Defense. The publication of this IDA document doess not Indicate
endorsement by Mhe Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

©1992 institute for Defense Analyses

The Goverment of the United States is granted an unlimited license to reproduce this
document.

0

Form Approved

REPORT DOCUMENTATION PAGE 0MNo. 0704-0188

Publicrepoetma bud for Utis coftueio of afosma.m, is m,,o,,,,edto avorage 1 hour p~or r .me:.icluding the t,,,me for reviewtmala..m'cie, ane.dcung dinng data _sourca.

collctio ofInfauaton. ncldingaagmnla for reeclucg this burdmuto Waslungton Headqumtera Servies, Dwectorate for Infomusoon Operaion and Reports. 12I1ffo
Davis Highway. Sute 1204. ArZ=eo. VA 22202-4302. and to the Office of Maruganent and Budget. Papawork Reductio Project (0704-0188). Waulumgon. DC 20503.

1. AGENCY USE ONLY (Leave blank) D REPORT DATE 3. ceT TYPE AND DATES COVERED

IDecember 1992 Filial

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Examination of Selected Software Testing Tools: 1992 MDA 903 89 C 0003

Task T-R2-597.21

6. AUTHOR(S)

Christine Youngblut

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-2769
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGAMONITORING AGENCY

SDIO/SDA REPORT NUMBER

Room IE149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution. January 13, 1993. 2A

13. ABSTRACT (Mauimumn 200 words)

This paper reports on the examination of 27 tools that provide for test management, problem reporting, and
static and dynamic analysis of Ada code. It provides software development managers with information that
will help them gain an understanding of the current capabilities of tools that are commercially available, the
functionality of these tools, and how they can aid the development and support of Ada software. During the
course of the examination, the static and dynamic analysis tools were applied to a sample Ada program in order
to assess their functionality. The test management and problem reporting tools were also subject to a practical
examination using vendor-supplied data. Each tool was then described in terms of its functionality, ease of use,
and documentation and support. Problems encountered during the examination and other pertinent
observations were also recorded. Available testing tools offer important opportunities for increasing software
quality and reducing development and support costs. The wide variety of functionality provided by tools in the
same category, however, and, in some cases, lack of tool maturity, require careful tool selection on behalf of a
potential user.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Testing Tools; Static & Dynamic Analysis; Problem Reporting; Ada. 504

16. PRICE CODE

I7.SBCURIrYCLASSIFICATION I8. SECURITY CLASSIFICATION 19.SECURITYCLASSFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF TInS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540.01-23-55oo S! d Porm 2" (Rav. 2.99)

Precribed by ANSI Std. Z39-18
291-102

UNCLASSIFIED

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut Accesion For

Bill Brykczynski, Task Leader NTIS CRAMV[
DTIC TAB3
U,:annout. ;ced
Just f !cation

By
Dist ib-tio: I

Availability Codes

Deceber199 Dit jAvail a~id/Ior~SpecialDecember 1992 Dist Spe*vail ado

DT•C Q m 1E~

Approved for public relue, unllumild dilstributlon. Janumy 13, 1M3.

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.21

UNCLASSIFIED

PREFACE

* This paper was prepared by the Institute for Defense Analyses (IDA) for the Strategic

Defense Initiative Organization (SDIO) as a follow-on effort for Subtask Order T-R2-
597.21, "Software Testing of Strategic Defense Systems." The objective of this subtask is
to assist the SDIO in planning, executing, and monitoring software testing and evaluation

* research, development, and practice.

In support of this objective, IDA conducted an examination of 27 tools that support soft-
ware testing. These tools provide for test management, problem reporting, and static and dy-
namic analysis of Ada code. This paper presents the results of the examination and provides

* software development managers with information on current capabilities of available test-

ing tools.

This paper was reviewed by the following members of the IDA research staff: Dr. Rob-
ert J. Atwell, Dr. Dennis W. Fife, Dr. Randy L. Garrett, Ms. Deborah Heystek, Ms. Audrey

A. Hook, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, and Dr. Richard L. Wexelblat.

V

SUMMARY

Software testing is labor intensive and can consume over 50% of software development

costs. Rarely is sufficient, effective testing performed as evidenced by the fact that a failure
rate of 3 to 10 failures per thousand lines of code is typical for commercial software. More-

over, the cost of correcting a defect increases as software development progresses; for ex-
*0 ample, the cost of fixing a requirements fault during operation can be 60 to 100 times the

cost of fixing that same fault during early development stages. Consequently, timely defect

detection is important. Automated testing tools can alleviate these problems by providing
managers with more insight into the progress of test activities, by reducing the traditionally

0 manual nature of testing, and by encouraging the application of improved testing practices.
Yet reviews of testing practices and tool usage reveal extremely poor exploitation of avail-

able testing tool support. Recent surveys of test practitioners indicate that there are few

common test practices and only scattered tool usage.

0 Over 600 testing tools from some 400 suppliers were identified during the course of this

study. From these, 27 tools were selected for examination. These tools support test manage-
ment, problem reporting, and static and dynamic analysis of Ada code. Consideration of
tools that are dependent on special hardware, limited to regression analysis, or form an in-

* tegral part of a computer-aided software engineering (CASE) system was postponed for a
later effort. Also, care was taken not to duplicate the tool assessment efforts of other groups.
During the course of the examination, the static and dynamic analysis tools were applied to

a series of Ada programs in order to assess their functionality. The test management and
0 problem reporting tools were also subject to a practical examination using vendor-supplied

data. Each tool was then described in terms of its functionality, ease of use, and documen-
tation and support. Problems encountered during tool use and other pertinent observations
were also recorded.

0 Significant findings from this study include the following:

Test management tools offer critically needed support for test planning and test
progress monitoring. This category of test tool is perhaps the latest to come to mar-
ket. With the exception of reliability analysis tools, which are becoming more com-
mon, progress monitoring capabilities are infrequently available and primitive.

Vii

...0..

Nevertheless, the ability of these tools to manage a collection of test information is
very valuable and the data available from the analysis of this information is urgently
needed to support the documentation and management of test activities.

" Problem reporting tools offer additional support for test management by provid-
ing insight into the status of software products and the progress of development
activities. These tools are primarily intended to support the tracking of identified soft-
ware problems and the management of problem resolution. They also provide infor-
mation on the status and quality of software products; in particular, they capture the
data needed for software reliability modeling. This data can also provide valuable
insights into the status and quality of the software development processes themselves,
and so support continuous process improvement.

"• Available static analysis tools are essentially limited to facilitating program
understanding and assessing characteristics of software quality. They provide
some minimal support for guiding dynamic testing. The types of defects tradition-
ally found by static analysis tools are now routinely checked for by Ada compilers.
Currently, complexity analysis, control flow analysis, and software browsing are the
most common static analysis functions supported.

"* Although many needed dynamic analysis capabilities are not commonly avail-
able, tools are available that offer considerable support for dynamic testing to
increase confidence in correct software operation. Dynamic analysis is the princi-
ple method used for software validation and verification. Here automated support for
the preparation of a test bed, generation of test data, and analysis of test results is
urgently needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human tester and increase software quality by
supporting test data adequacy analysis and test repeatability. Tools that offer elements
of this type of support are available.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. Existing testing tools are generally easy to use and sup-

ported by good documentation. There were instances during this study, however, where dif-

ferent tools gave different results when performing the same function, for example,

calculating cyclomatic complexity. Moreover, some of the tools contained faults. While

most failures were trivial, others rendered a tool unusable.

Available testing tools offer important opportunities for increasing software quality and

reducing development and support costs. Even so, there are a number of specific problems

with these tools and a lack of needed functionality that may handicap testing of Ada soft- 1

ware:

"* There is a lack of tool support for testing concurrent Ada software.

"* There is a need for increased tool integration to provide more complete coverage of
testing activities.

vtii

0

• There is a need for integration of testing tools into CASE systems to provide
improved feedback into development activities.

* There is a lack of data on the cost effectiveness of particular test techniques and tools
that can be used to encourage and guide tool use.

i

0I

PART I STUDY OVERVIEW

1. IN TRO D U CTIO N .. 1-1
1.1 Purpose ... 1-1
1.2 Scope ... 1-1

2. STATE O F PRA CTICE .. 2-1

3. TEST REQUIREMENTS AFFECTING TOOL USE .. 3-1
3.1 Affect of SDIO Software Test Requirements on Tool Use 3-1
3.2 Affect of the SEI Process Maturity Model on Tool Use 3-3
3.3 Affect of the Software Metrics Program on Tool Use 3-5

4. A PPRO A CH A ND M ETH O D S ... 4-1
4.1 Tool Selection ... 4-1
4.2 M ethod of Exam ination .. 4-4
4.3 CA SE System Support for Softw are Testing ... 4-5
4.4 Development Environment Support for Software Testing 4-5

5. TE ST M A N AG EM ENT ... 5-1
5.1 Test Planning and D ocum entation .. 5-2
5.2 Requirem ents M apping .. 5-3
5.3 Test Progress M onitoring ... 5-3
5.4 Productivity A nalysis ... 5-5

6. PR O BLEM REPORTIN G .. 6-1
6.1 Report Types and D etails Captured .. 6-1
6.2 Im port Capability .. 6-2
6.3 Reporting Capabilities .. 6-2
6.4 Standards Conform ance .. 6-3
6.5 Distributed A rchitecture ... 6-3

7. STATIC AN ALY SIS .. 7-1
7.1 Com plexity A nalysis .. 7-1

* 7.2 D ata Flow A nalysis .. 7-3
7.3 Control Flow A nalysis .. 7-3
7.4 Inform ation Flow A nalysis ... 7-5
7.5 Standards Conform ance A nalysis ... 7-5
7.6 Q uality A nalysis ... 7-6

* 7.7 Cross-Reference A nalysis .. 7-6
7.8 Brow sing ... 7-7
7.9 Sym bolic Evaluation .. 7-7
7.10 Specification Com pliance A nalysis .. 7-8
7.11 Pretty Printing ... 7-8

8. D Y N A M IC A N ALY SIS ... 8-1

xi

8.1 A ssertion A nalysis .. 8-1
8.2 Coverage A nalysis .. 8-2

8.2.1 Structural Coverage A nalysis .. 8-2
8.2.2 D ata Flow Coverage Analysis ... 8-3
8.2.3 Functional Coverage A nalysis .. 8-4

8.3 Profiling .. 8-5
8.4 Tim ing A nalysis ... 8-5
8.5 Test Bed G eneration ... 8-5
8.6 Test D ata G eneration Support .. 8-6

8.6.1 Structural Test D ata G eneration .. 8-7
8.6.2 Functional Test D ata G eneration .. 8-7
8.6.3 Param eter Test D ata G eneration ... 8-8
8.6.4 G ram m ar-based Test D ata G eneration .. 8-8

8.7 Test D ata A nalysis .. 8-8 0
8.8 D ynam ic G raph G eneration .. 8-8

9. FIND IN G S .. 9-1
9.1 Status of A vailable Tools ... 9-1
9.2 Significant Deficiencies .. 9-4 0

PART II TOOL EXAMINATION REPORTS

10. INTROD U CTIO N .. 10-1

11. AdaQ uest ... 11-1
11.1 Tool O verview .. 11-1
11.2 O bservations .. 11-3
11.3 Planned Additions ... 11-4
11.4 Sam ple O utputs ... 11-4 0

12. A utoFlow -Ada .. 12-1
12.1 Tool O verview .. 12-1
12.2 O bservations ... 12-2
12.3 Planned A dditions .. 12-2 5
12.4 Sam ple O utputs .. 12-3

13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTs) 13-1
13.1 Tool Overview .. 13-1
13.2 O bservations ... 13-3
13.3 Recent Changes and Planned Additions ... 13-4
13.4 Sam ple O utputs .. 13-4

14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA) 14-1
14.1 Tool O verview .. 14-1
14.2 O bservations ... 14-3

xii

1-7

14.3 Sample Outputs .. 14-3

15. LDRA Testbed .. 15-1
15.1 Tool Overview .. 15-1
15.2 Observations ... 15-5
15.3 Planned Additions .. 15-7
15.4 Sample Outputs .. 15-7

16. Logiscope .. 16-1
16.1 Tool Overview .. 16-1
16.2 Observations ... 16-5
16.3 Planned Additions .. 16-6
16.4 Sample Outputs .. 16-6

17. M ALPAS .. 17-1
17.1 Tool Overview .. 17-1
17.2 Observations ... 17-2
17.3 Planned Additions .. 17-4
17.4 Sample Outputs .. 17-4

18. QES/M ANAGER .. 18-1
18.1 Tool Overview .. 18-1
18.2 Observations ... 18-3
18.3 Planned Additions .. 18-4
18.4 Sample Outputs .. 18-4

19. SoftTest ... 19-1
19.1 Tool Overview .. 19-1
19.2 Observations ... 19-3
19.3 Sample Outputs .. 19-4

20. SQA:M anager ... 20-1
20.1 Tool Overview .. 20-1
20.2 Observations ... 20-4
20.3 Recent Changes and Planned Additions ... 20-5
20.4 Sample Outputs .. 20-5

21. SRE TOOLKIT ... 21-1
21.1 Tool Overview .. 21-1
21.2 Observations ... 21-2
21.3 Sample Outputs .. 21-3

22. T .. 22-1
22.1 Tool Overview .. 22-1
22.2 Observations ... 22-4
22.3 Recent Changes and Planned Additions ... 22-5

xiii

22.4 Sam ple Outputs .. 22-5

23. T-PLAN .. 23-1
23.1 Tool Overview .. 23-1
23.2 Observations ... 23-4
23.3 Recent Changes and Planned Additions ... 23-5
23.4 Sam ple Figures ... 23-5

24. TBGEN and TCM ON ... 24-1
24.1 Tool Overview .. 24-1

24.1.1 TBGEN Overview ... 24-1
24.1.2 TCM ON Overview .. 24-2

24.2 Observations .. 24-3
24.3 Recent Changes .. 24-4
24.4 Sam ple Outputs .. 24-4

25. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TSCOPE, & TDGen 25-1
25.1 Tool Overview .. 25-1

25.1.1 TCAT/Ada and S-TCAT/Ada Overview .. 25-2
25.1.2 TCAT-PATH Overview .. 25-3
25.1.3 TSCOPE Overview ... 25-4
25.1.4 TDGen Overview .. 25-5

25.2 Observations ... 25-6
25.3 Recent Changes .. 25-7
25.4 Sam ple Outputs .. 25-7

26. TST ... 26-1
26.1 Tool Overview .. 26-1
26.2 O bservations ... 26-3
26.3 Recent Changes .. 26-4
26.4 Sam ple Outputs .. 26-5

27. Test/Cycle and M etrics M anager .. 27-1
27.1 Tool Overview .. 27-1

27.1.1 Test/Cycle Overview ... 27-2
27.1.2 M etrics M anager Overview ... 27-4

27.2 Observations ... 27-6
27.3 Planned Additions .. 27-6
27.4 Sam ple Outputs .. 27-7

28. TestGen, QualGen, GrafBrowse, and the ADADL Processor 28-1
28.1 Tool Overview .. 28-1

28.1.1 AD ADL Processor Overview .. 28-2
28.1.2 TestG en Overview .. 28-3
28.1.3 QualG en Overview .. 28-4
28.1.4 GrafBrowse Overview ... 28-4

xiv

S

28.2 Observations ... 28-5
28.3 Planned Additions .. 28-6
28.4 Sam ple Outputs .. 28-6

REFERENCES .. A-1

ACRO NYM S AND ABBREVIATION S .. B-I

G LOSSARY .. C-1

xv

LIST OF FIGURES

p Figure 2-1. Tool Usage Reported in Software Test Practices Survey 2-3
Figure 11-1. AdaQuest Unit Nesting Report .. 11-5
Figure 11-2. AdaQuest Branch Report ... 11-6
Figure 11-3. AdaQuest Coverage Test Run Report .. 11-7
Figure 11-4. AdaQuest Unit Coverage Report ... 11-8
Figure 11-5. AdaQuest Branch Coverage Detail Report .. 11-9
Figure 11-6. AdaQuest Branch Coverage Summary Report .. 11-10
Figure 11-7. AdaQuest Branch Coverage Report Showing Test Runs 11-11
Figure 11-8. AdaQuest Branch Coverage Not-Hit Report ... 11-12
Figure 11-9. AdaQuest Coverage History Detail Report .. 11-13
Figure 11-10. AdaQuest Coverage History Summary Report .. 11-14
Figure 11-11. AdaQuest Interval Test Run Report ... 11-15
Figure 11-12. AdaQuest Interval Timing Report .. 11-16
Figure 12-1. AutoFlow-Ada Page 1 of 6 Flowgraph for Function ALTERNATE 12-4
Figure 12-2. AutoFlow-Ada Page 2 of 6 Flowgraph for Function ALTERNATE 12-5
Figure 12-3. AutoFlow-Ada Page 3 of 6 Flowgraph for Function ALTERNATE 12-6
Figure 12-4. AutoFlow-Ada Page 4 of 6 Flowgraph for Function ALTERNATE 12-7
Figure 12-5. AutoFlow-Ada Page 5 of 6 Flowgraph for Function ALTERNATE 12-8
Figure 12-6. AutoFlow-Ada Page 6 of 6 Flowgraph for Function ALTERNATE 12-9
Figure 13-1. DDTs Sample Defect Report .. 13-5
Figure 13-2. DDTs Management Summary Report: Defect Reports 13-6
Figure 13-3. DDTs Management Summary Report: Defect Arrival and Repair Rate

(A ll Levels) ... 13-9
Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate

(Sev. 1 & 2) ... 13-10
Figure 13-5. DDTs Management Summary Report: Sample Histograms 13-11
Figure 13-6. DDTs Management Summary Report: Bug Summaries 13-14
Figure 13-7. DDTs Management Summary Report: General Statistics 13-15
Figure 13-8. DDTs Examples of GUI Outputs ... 13-17
Figure 14-1. EDSA Threads View of Compilation Unit LL_TOKENS 14-4
Figure 14-2. EDSA Breaks View of Compilation Unit LL_TOKENS 14-5
Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable I 14-6
Figure 14-4. EDSA Screen of Statement Traversal Using Control Flow in Unit

LL_TOKE N S .. 14-7
Figure 14-5. EDSA Annotations Example in Compilation Unit LL_TOKENS 14-8
Figure 14-6. EDSA Pebbling Example in Compilation Unit LLTOKENS 14-9
Figure 15-1. LDRA Testbed Management Summary for LL_COMPILE 15-8
Figure 15-2. LDRA Testbed Static Call Tree of LL_COMPILE 15-14
Figure 15-3. LDRA Testbed Dynamic Call Tree of LLCOMPILE 15-15
Figure 15-4. LDRA Testbed Data Flow Analysis of LLCOMPILE 15-16
Figure 15-5. LDRA Testbed Information Flow Analysis for LLFIND 15-19
Figure 15-6. LDRA Testbed Complexity Analysis for LLFIND 15-20
Figure 15-7. LDRA Testbed System View McCabe's Complexity Measure 15-25

xvii

Figure 15-8. LDRA Testbed System View Knots Complexity Measure 15-26
Figure 15-9. LDRA Testbed Kiviat Graph for LLFIND .. 15-27
Figure 15-10. LDRA Testbed LCSAJ Analysis for LLCOMPILE 15-28
Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND 15-30
Figure 15-12. LDRA Testbed Dynamic Analysis for LLCOMPILE 15-31
Figure 15-13. LDRA Testbed System View Statement Coverage 15-39
Figure 15-14. LDRA Testbed System View Branch Coverage 15-40
Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage 15-41
Figure 15-16. LDRA Testbed Coverage Achieved Comparison 15-42
Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM 15-43
Figure 15-18. LDRA Testbed Data Set Analysis for LLFIND... 15-44
Figure 15-19. LDRA Testbed Profile Analysis .. 15-45
Figure 16-1. Logiscope Control Graph of Function LLFIND 16-7
Figure 16-2. Logiscope Textual Representation of Control Graph of Function LLFIND. 16-8
Figure 16-3. Logiscope Basic Counts for Function LLFIND... 16-9
Figure 16-4. Logiscope Commented Listing for Function LLFLND 16-10
Figure 16-5. Logiscope Kiviat Graph of Function LLFIND .. 16-11
Figure 16-6. Logiscope Criteria Graph of Function LLFIND 16-12
Figure 16-7. Logiscope Kiviat Graph of All Components ... 16-13
Figure 16-8. Logiscope Overall Metrics Distribution for Program Length 16-14
Figure 16-9. Logiscope Overall Metrics Distribution for Cyclomatic Complexity 16-15
Figure 16-10. Logiscope Components per Metrics Category for Number of Statements 16-16
Figure 16-11. Logiscope Overall Criteria Distribution for Testability 16-17
Figure 16-12. Logiscope Overall Criteria Distribution for Simplicity 16-18 0
Figure 16-13. Logiscope Quality Report .. 16-19
Figure 16-14. Logiscope Excerpt from Default Quality Model 16-20
Figure 16-15. Logiscope IB Coverage of Function LLFIND 16-22
Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT 16-23
Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT 16-25 0
Figure 16-18. Logiscope IB Coverage Histogram 16-28
Figure 16-19. Logiscope DDP Coverage Histogram 16-29
Figure 16-20. Logiscope Overall IB Coverage for Input testl.lex 16-30
Figure 16-21. Logiscope Overall DDP Coverage for Input test l.lex 16-31
Figure 16-22. Logiscope Metrics Table of Root 16-32 0
Figure 16-23. Logiscope Call Graph Path Testability of Root 16-32
Figure 16-24. Logiscope Call Graph Component Accessibility of Root.................. 16-33
Figure 16-25. Logiscope Call Graph Calling/Called Components of Root............... 16-33
Figure 16-26. Logiscope Dynamic Call Graph of Root.. 16-34
Figure 16-27. Logiscope List of Call Graph Components per Level from Root 16-35
Figure 16-28. Logiscope PPP Coverage of Root 16-36
Figure 17-1. MALPAS Sample Pascal Code Illustrating MALPAS Analyses 17-5
Figure 17-2. MALPAS Intermediate Language Translation of Sample 17-6
Figure 17-3. MALPAS Control Flow Analysis of ADVANCE 17-8
Figure 17-4. MALPAS Data Use Analysis of ADVANCE 17-8
Figure 17-5. MALPAS Information Flow Analysis of ADVANCE 17-9

Xviii

0

Figure 17-6. MALPAS Semantic Analysis of ADVANCE .. 17-10
Figure 18-1. QES/M anager Report Layout ... 18-5
Figure 18-2. QES/Manager Map of Master Driver ... 18-6
Figure 18-3. QES/Manager Problem Report .. 18-7
Figure 19-1. SoftTest Graph Entry Phase Input ... 19-5
Figure 19-2. SoftTest Variation Analysis Phase Output ... 19-9
Figure 19-3. SoftTest Test Synthesis Phase Output ... 19-12
Figure 19-4. SoftTest Functional Variation Coverage Matrix .. 19-17
Figure 19-5. SoftTest Test Case vs. Node Name Definition Matrix 19-19
Figure 19-6. SoftTest Cause-Effect Graph ... 19-21
Figure 19-7. SoftTest Functional Requirements Report ... 19-24
Figure 19-8. SoftTest 2167A Document Template .. 19-27
Figure 20-1. SQA:Manager Test Plan for ACTIII02PN ... 20-6
Figure 20-2. SQA:Manager Test Specification Report for Test Spec ACTII102DS 20-7
Figure 20-3. SQA:Manager Test Case Report for Test Case INVPRN 20-8
Figure 20-4. SQA:Manager Test Procedure Report for Procedure CHKRUNS 20-9
Figure 20-5. SQA:Manager Software Items Report ... 20-10
Figure 20-6. SQA:Manager Test Tool Report .. 20-10
Figure 20-7. SQA:Manager Test Log Report ... 20-11
Figure 20-8. SQA:Manager Test Case Report for Test Case INVPRN 20-12
Figure 20-9. SQA:Manager Problems Table .. 20-12
Figure 20-10. SQA:Manager Fixed Problems Ready for ReTest 20-13
Figure 20-11. SQA:Manager Cost of Repair Table .. 20-13
Figure 20-12. SQA:Manager Cost of Testing ... 20-14
Figure 20-13. SQA:Manager Cost of Repair Graph ... 20-15
Figure 20-14. SQA:Manager Cost of Testing Histogram ... 20-15
Figure 20-15. SQA:Manager Reliability Analysis Table and Graph 20-16
Figure 20-16. SQA:Manager Failure Intensity Table and Graph 20-17
Figure 20-17. SQA:Manager Plot of Incidents by Symptom ... 20-18
Figure 20-18. SQA:Manager Plot of Problems by Severity ... 20-18
Figure 21 -1. SRE Toolkit Generated Reliability Measures .. 21-4
Figure 21-2. SRE Toolkit Failure vs. Execution Time Plot .. 21-5
Figure 21-3. SRE Toolkit Initial Intensity vs. Execution Time Plot 21-6
Figure 21-4. SRE Toolkit Present Intensity vs. Calendar Time Plot 21-7
Figure 21-5. SRE Toolkit Completion Date vs. Failure Data ... 21-8
Figure 21-6. SRE Toolkit Testing Resource Usage Parameter Estimation 21-9
Figure 21-7. SRE Toolkit Reliability Demonstration Chart ... 21-10
Figure 21-8. SRE Toolkit Completion Date vs. Failure Intensity Output 21-11
Figure 21-9. SRE Toolkit Life Cycle Cost and Failure Intensity Objective Plot 21-12
Figure 22-1. T Sam ple SDF .. 22-6
Figure 22-2. T Software Description Verification .. 22-9
Figure 22-3. T Software Description Metrics ... 22-10
Figure 22-4. T Design Rule Verification .. 22-1 1
Figure 22-5. T Test Catalog .. 22-13
Figure 22-6. T Sample Generation ... 22-14

xix

Figure 22-7. T Test Case Definitions .. 22-17
Figure 23-1. T-PLAN Test Model Functional Condition List Report 23-6
Figure 23-2. T-PLAN Test Model Sample Print for Input Ref .. 23-7
Figu:re 23-3. T-PLAN Test Model Input & Output References for Test Spec FIN 23-8
Figure 23-4. T-PLAN Test Model No Screen Data Testing for FIN 23-9
Figure 23-5. T-PLAN Test Model Output Print for FIN .. 23-9
Figure 23-6. T-PLAN Test Model Test Specification Information for FIN 23-10
Figure 23-7. T-PLAN Test Dictionary Function, Input, Output Reference Index 23-13
Figure 23-8. T-PLAN Test Dictionary Functions, Inputs, Outputs Used in FIN 23-14
Figure 23-9. T-PLAN Test Dictionary Condition Impact on Data Profiles 23-14
Figure 23-10. T-PLAN Test Dictionary Change Impact for Function MME, Input

EIN , O utput FIS .. 23-15
Figure 23-11. T-PLAN Test Dictionary Test Specification Index 23-15
Figure 23-12. T-PLAN Test Management Service Query Report for SQ 00002 23-16 0
Figure 23-13. T-PLAN Test Management Test Spec/SQ Log for FIN 23-16
Figure 23-14. T-PLAN Test Management Service Query Reports 23-17
Figure 23-15. T-PLAN Overall Progress for IBS ... 23-18
Figure 23-16. T-PLAN Test Management Service Query Reports 23-19
Figure 23-17. T-PLAN Test Management Reports .. 23-20 0
Figure 24-1. TBGEN Record File ... 24-5
Figure 24-2. TBGEN Trace File ... 24-6
Figure 24-3. TBGEN Generated Log File .. 24-7
Figure 24-4. TCMON Profile Execution Listing .. 24-8
Figure 24-5. TCMON Log File ... 24-9 0
Figure 24-6. TCMON Coverage Summary .. 24-10
Figure 25-1. TCAT/Ada Reference Listing for LLCOMPILE ... 25-8
Figure 25-2. TCAT/Ada Instrumentation Statistics for LLCOMPILE 25-9
Figure 25-3. TCAT/Ada Directed Graph for LLFIND from LL_COMPILE 25-10
Figure 25-4. TCAT/Ada Segment Coverage Report using testl.lex 25-11 0
Figure 25-5. TCAT/Ada Segment Coverage Report using testl.lex & sample.lex 25-14
Figure 25-6. TCAT-PATH Segment and Node Reference Listing for LL_COMPILE ... 25-18
Figure 25-7. TCAT-PATH Instrumentation Statistics for LLFIND 25-19
Figure 25-8. TCAT-PATH Cyclomatic Complexity of Function LLFIND 25-19
Figure 25-9. TCAT-PATH Segment Count for Each Module in LLCOMPILE 25-20 •
Figure 25-10. TCAT-PATH Digraph of Function LLFIND ... 25-20
Figure 25-11. TCAT-PATH All Paths for LLFIND ... 25-21
Figure 25-12. TCAT-PATH Basis Paths for LLFIND ... 25-21
Figure 25-13. TCAT-PATH Path Statistics for LLFIND ... 25-21
Figure 25-14. TCAT-PATH Path and Segment Information for LLFIND 25-22
Figure 25-15. TCAT-PATH Coverage Report for BUILDRIGHT using testl.lex 25-23
Figure 25-16. S-TCAT/Ada Call Graph for LL_TOKENS .. 25-24
Figure 25-17. S-TCAT/Ada Call-Pair Coverage using testl.lex 25-25
Figure 25-18. S-TCAT/Ada Call-Pair Coverage using testl.lex Accounting for All

Call-Pairs .. 25-27
Figure 25-19. S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.lex 25-29 0

xx

Figure 25-20. TSCOPE Dynamic Display of Coverage on Directed Graph for LLFIND 25-33
Figure 25-2 1. TSCOPE Dynamic Display of Coverage Accumulation for LLFIND 25-33
Figure 25-22. TDGen Sample Value and Template Files 2...... 5-34
Figure 25-23. TDGen Table of Sequential Combinations for Initial Files 25-34
Figure 25-24. TDGen Output of First Random Execution ... 25-35
Figure 25-25. TDGen Output After 3 Executions with 1 st Value File 25-35
Figure 25-26. TDGen Output After 2 Executions with 2nd Value File 25-35
Figure 26-1. TST Test Configuration File for Function LLFIND 26-6
Figure 26-2. TST Parameter Report for Function LLFIND ... 26-7
Figure 26-3. TST Execution History Report for Function LLFIND 26-9
Figure 26-4. TST Execution Summary Report for Function LLFIND 26-10
Figure 26-5. TST Sample Test Data File for Function LLFIND 26-11
Figure 26-6. TST Function LLFIND .. 26-12
Figure 27-1. Test/Cycle Requirements Hierarchy Report .. 27-8
Figure 27-2. Test/Cycle Requirement Description Report ... 27-10
Figure 27-3. Test/Cycle High-Level Validation Matrix Screen 27-1 1
Figure 27-4. Test/Cycle Intermediate Level Matrix Screen ... 27-11
Figure 27-5. Test/Cycle Detail Level Matrix Screen .. 27-11
Figure 27-6. Test/Cycle Build Description Report ... 27-12
Figure 27-7. Test/Cycle Components Description Report .. 27-13
Figure 27-8. Test/Cycle Test Run Description Report ... 27-14
Figure 27-9. Test/Cycle Requirements Validation Status Screen 27-15
Figure 27-10. Test/Cycle Test Run Validation Status Screen .. 27-15
Figure 27-11. Test/Cycle Test Case Description Report .. 27-16
Figure 27-12. Test/Cycle Test Case Linkages Screen .. 27-17
Figure 27-13. Test/Cycle Test Case Referenced by Requirement Screen 27-17
Figure 27-14. Test/Cycle Test File Description Report .. 27-18
Figure 27-15. Test/Cycle Work Request Description 27-19
Figure 27-16. Test/Cycle Work Request Log Report ... 27-19
Figure 27-17. Metrics Manager Database Full Report ... 27-20
Figure 27-18. Metrics Manager Enterprise & MIS Metric Summary Report 27-28
Figure 27-19. Metrics Manager Function Points Productivity vs. Type of Effort 27-30
Figure 27-20. Metrics Manager Development Defect Removal Efficiency vs. Size

of Product .. 27-31
Figure 27-21. Metrics Manager Development Defect Removal Efficiency vs.Tools

U sed .. 27-32
Figure 27-22. Metrics Manager Development Unit Cost vs. Size of Product Showing

Industry D ata ... 27-33
Figure 28-1. AD AD L Listing ... 28-7
Figure 28-2. ADADL Program Unit Cross Reference Report .. 28-8
Figure 28-3. ADADL Object Cross Reference Report ... 28-9
Figure 28-4. ADADL Type Cross Reference Report ... 28-10
Figure 28-5. ADADL Declaration Tree .. 28-11
Figure 28-6. ADADL Invocation Tree ... 28-12
Figure 28-7. ADADL Additional Cross Reference Reports ... 28-13

x)i

Figure 28-8. ADADL Complexity Summary Report ... 28-15
Figure 28-9. ADADL Program Unit ID Report .. 28-16
Figure 28-10. ADADL Objects Declared but Not Used Report 28-16
Figure 28-11. ADADL Types Declared But Not Used Report ... 28-16
Figure 28-12. ADADL Program Units Declared But Not Used Report 28-17
Figure 28-13. ADADL Program Units with High Complexity Metrics Report 28-18
Figure 28-14. ADADL Error Cross Reference Report ... 28-18
Figure 28-15. TestGen Test Conditions for Path Testing of LLFIND 28-19
Figure 28-16. TestGen Test Case Effort Report ... 28-21
Figure 28-17. TestGen Unreachable Statement Report for LLCOMPILE 28-22
Figure 28-18. TestGen McCabe Complexity Report for LLCOMPILE 28-23
Figure 28-19. TestGen Test Coverage Summary using testl.lex 28-24
Figure 28-20. TestGen Sub-Program Invocation Count Report using testl .lex 28-25
Figure 28-21. TestGen Statement Execution Report using test .lex for ADVANCE 28-26
Figure 28-22. TestGen Branch Path Coverage Analysis using test l.lex for ADVANCE 28-27
Figure 28-23. TestGen Structured Testing Path Coverage Analysis using testl.iex

for A D V A N CE ... 28-28
Figure 28-24. TestGen Test Coverage Summary using testl.lex & sample.lex 28-30
Figure 28-25. QualGen Report Excerpt .. 28-31 0
Figure 28-26. GrafBrowse Flat Invocation Graph of LLCOMPILE 28-34
Figure 28-27. GrafBrowse Declaration Tree of LLCOMPILE 28-35
Figure 28-28. GrafBrowse Flat Callby Tree of LLFIND ... 28-36
Figure 28-29. Grafbrowse Browsing LLFIND ... 28-37

Xxii

LIST OF TABLES

Table 2-1. Practices Reported in Software Test Practices Survey 2-1
Table 2-2. Practices Reported in Software Measures & Practices Benchmark Survey.. 2-2
Table 3- 1. SDIO Test Requirements ... 3-2
Table 3-2. PMM-Implied Test Requirements ... 3-4
Table 3-3. Software Metrics Plan Implied Test Requirements....................................... 3-6
Table 4- I. Tools Examined in the CRWG and STSC Studies....................................... 4-2
Table 4-2. Tools Examined in the IDA Study ... 4-3
Table 4-3. Tools Planned for Future Examination ... 4-4
Table 4-4. CASE-based Testing Support... 4-7
Table 4-5. Ada Development Environment-based Testing Support 4-8
Table 5-1. Test Management Capabilities of Examined Tools 5-1
Table 6-1. Problem Reporting Capabilities of Examined Tools 6-1
Table 7-1. Static Analysis Capabilities of Examined Tools *- I
Table 7-2. Supported Complexity Measures 7-2
Table 8-1. Dynamic Analysis Capabilities of Examined Tools........................ 8-1
Table 8-2. Structural Coverage Analysis Characteristics 8-4
Table 8-3. Test Bed Generation Characteristics ... 8-6
Table 10-I. Tool Profiles 10-2
Table 10-2. Supplier Profiles .. 10-4

xxiii

0

0

0

PART I

0

* STUDY OVERVIEW

0

0

0

0

0

0

PART I Introduction

1. INTRODUCTION

1.1 Purpose

This report provides software developers with information that will help them gain an

understanding of the types of software testing tools that are available, the functionality of

these tools, and how they can aid the development and support of Ada software for the Stra-

tegic Defense Initiative (SDI).

1.2 Scope

Tools are available to support a variety of testing tasks at different stages in the software

life cycle. To make best use of available resources, the work described here was initially

limited to the examination of tools that support the static and dynamic analysis needed for

testing Ada code. Code-based testing was selected as being one area where automated sup-

port is critically needed, both to increase software reliability and to reduce development and

support costs. Restriction to the Ada programming language [ANSI/MIL-STD-1983] was

adopted in view of Department of Defense (DoD) Instruction'5000.2 [DoDI 1991]. The

scope of the study was subsequently extended to include test management and problem re-

porting tools. The purpose of this extension is to accommodate DoD's increasing trend to-

wards the use of software metrics to support the management of software development and

as a basis for continual process improvement.

The report is divided into two parts. Part I starts by setting the scene for the following

discussions by taking a brief look at the current state of practice in software testing. Special

software test requirements imposed by the Strategic Defense Initiative Organization

(SDIO), and how automated test tools could support meeting these requirements, are also

discussed. Part I goes on to describe how particular tools were selected for examination,

identifies the tools so selected, and outlines the method of examination. The following sec-

tions summarize tool functionality in the areas of test management, problem reporting, stat-

ic analysis, and dynamic analysis. This first part of the report concludes by summarizing the

findings resulting from this work.

Based on the experience gained during their examination, Part II provides a usage-based

description of the tools and example report outputs. This more technical presentation is in-

tended to provide further insight for the potential tool user.

1-I

Introduction PART I 0

This is a follow-on report to IDA Paper-2686 [Youngblut 1991]. The earlier report dis-

cusses the examination of some 10 tools for the static and dynamic analysis of Ada code.

For convenience, those discussions have been updated as appropriate and are included here.

0

1-2

PART I State of Practice

2. STATE OF PRACTICE

* The high cost of software testing has long been recognized by the software community.

In the early 1970s, data collected during development of a number of large software systems

(e.g., SAGE, NTDS, Gemini, Saturn V, and IBM OS/360) revealed that 50% of develop-
ment costs were incurred by software testing [Boehm 19801.1 This figure holds true today

* [AFSCP 1987, Korel 1991, Yourdon 1990]. Even with this level of effort, operational soft-

ware still fails. Commercial software typically experiences 3 to 10 failures per thousand line
of code (KLOC) and industrial software experiences 1 to 3 failures per KLOC [Boehm

1988].

* Recent surveys of current testing practices help to explain these figures. The Software
Test Practices Survey [SQE 1990], conducted at the Seventh International Software Testing
Conference, for example, found that software test practices were weak at the unit testing
level and only slightly better for system and acceptance testing. In fact, when common test-
ing practices were defined as those which more than 60% of respondents ranked as standard
practice, no common practices for unit testing could be identified. Table 2-1 shows the per-
centage of responses indicating testing process and management practices as standard.

Table 2-1. Practices Reported In Software Test Practices Survey

Percentage of responses Indicating practices Unit Test
common or standard System Test

Process Practices Ac. tance Test
Software risks are systematically analyzed. 11 30 32
Test cases & procedures are formally documented. 25 52 60
Test are specified before software design. 6 15 15
Test cases & procedures are saved after testing. 29 58 54
Formal report of test results is produced. 33 65 60
Requirements coverage is analyzed or traced. 17 55 54
Code coverage is analyzed or traced. 18 28 27
Design coverage is analyzed or traced. 15 32 38
Formal exit criteria used to specify test completion. 22 18 17
Tests are rerun after software changes. 18 39 38
Test process is systematic and standardized. 39 70 65
Test cases & procedures assigned unique names. 21 55 54

Management Practices Boldface print
A record of time spent on testing is produced. 14 42 39 indicates common
Cost of testing is measured and reported. 11 28 24 practice (>60%)
A record of faults and defects found is produced. 26 68 70
The patterns of faults and defects regularly analyzed. 10 27 24
Defect density is measured. 10 19 16
User or customer satisfaction is measured. 17 42 42
Number of changes or change requests is measured. 8 16 16
Test effectiveness and efficiency measured & reported. 9 20 21
Testers are formally trained. 10 30 23
The test process is documented in standards manual. 24 22 30

1. For NASA's Apollo program, 80% of the total software development effort was incurred by test-
ing [Dpnn 1984].

2-1

State of Practice PART I

Xerox Corporation and Software Quality Engineering conducted a joint survey called

the Software Measures and Practices Benchmark Study [SQE 1991]. The first part of this

work provided a preliminary assessment of typical software practices and measures in use

in industry. The results of this initial work were used to identify those organizations that

employ the most of what industry generally considers to be good practices. The organiza-

tions selected were AT&T, E.I. DuPont de Nemours, GTE Corporation, IBM, NCR Corpo-

ration, Siemens AG, and Xerox Corporation. Each was asked to pick one or two of their

"best" projects from which to provide data for the survey. Table 2-2 reproduces some of

the results. Even though these organizations were selected as ones that most frequently em-

ploy advanced testing practices, very few testing practices were in common use at that time.

Although tools are more frequently used for system and acceptance testing rather than

unit testing, the Software Test Practices Survey found that there were no types of tools that

more than 60% of respondents cited as commonly used. As shown in Figure 2-1 the most

widely used type of tool was only used by 50% of the respondents. Similarly, the Software

Measures and Practices Benchmark Study found only scattered use of tools.

Table 2-2. Practices Reported In Software Measures & Practices Benchmark Survey

Mean scores for practical usage Low

Process Practices Me High
Software risks (potential failures) are systematically analyzed. 1.00 157 1.94
Test planning & specifications are stated in requirements phase. .90 1.47 2.14
Unit test plans/specifications are prepared. 1.19 1.96 2.53
Someone other than programmer performs/reviews unit testing. .87 1.54 2.S9
Module or program complexity is measured. . 1.16 1.81
Software changes are analyzed for ripple effect and test impact. 1.47 1.97 2.33
Unit branch & statement execution coverage is analyzed. .60 1.24 1.49
Unit test results ame recorded. 1.06 1.89 2.71
Tests are cross-referenced to requirements. 1.00 1.65 2.13
Test plans & specifications are formally reviewed. 1.91 2.21 2.56
Code coverage is analyzed for entire system during system test. .68 151 2.14
Random testing is used to evaluate reliability. 1.00 1.72 2.26
Tests are systematically saved & reused. 1.10 2.18 2.83 Boldface print
Features fixed in previous test cycles systematically retested. 1.70 2.21 2.67 indicates common

Management Practices practice (>2.25)
Cost of quality activities is measured and reported. 37 137 2.4
Defects are analyzed to determine cause & when created. 1.00 155 2.02
Defects found during testing are recorded & tracked. 2A2 2.70 2.89
Defect analysis & trends used to identify process changes. 1.00 1.47 1.96
Number of defects found after release is measured. 1.62 2.62 3.00
Number of new defects introduced per "fix" is recorded. 133 1.87 291
Time to identify & correct defects is measured. 1.0 2.30 2.91
Test procedures & policies are clearly identified & described. 1.86 2.28 2.85

Score Usage
< 1.25 Undharaceristic
1.25-1.75 Scattered
1.75&2.25 Signfficant

>.2.25 Accted

2-2

0

PART I State of Practice

100
Percentage of
Common Tool
Use 90

70 F unit

60 -- System
so Acceptance

40 -

30

* ~20 -

10

0 W ~ a- -sm.
V A Tools

Figure 2-1. Tool Usage Reported In Software Test Practices Survey

Although the results from only two surveys are cited here, there is much data to support

these findings. Similar data is provided in, for example, the survey sponsored by the Mas-

sachusett Computer Software Council [KPMG 19921.

2-3

PART I Test Requirements

3. TEST REQUIREMENTS AFFECTING TOOL USE

This section considers three major drivers that encourage the use of testing tools for the

development of SDI software. The first of these is the current set of SDIO documents that

provides policy and guidance for software development in general. The second driver is the

Software Engineering Institute (SEI) Process Maturity Model (PMM) [Humphrey 1987]

that routinely will be used in the near future to conduct evaluations of SDI contractors' soft-

ware engineering practices. The final driver considered is the Global Protection Against

Limited Strikes (GPALS) Computer Resources Working Group (CRWG) software metrics

evaluation program.

SDIO requirements are not the only reason to use automated test tools. Indeed, because

of the complexity of detail involved in testing even the simplest program, tools are a pre-

requisite for most forms of static and dynamic analysis. Similarly, the ability to capture, an-

alyze, and present quantitative process measurement data in a r-,'aningful form greatly

facilities test management. Although there is a lack of consL.ent data on the cost effective-

ness of particular testing tools, there can be no doubt that automated tools are able to im-

prove the cost effectiveness of testing. On:- test practitioner, for example, cites reductions

in testing time of up to 70%, a 30% increase in overall software development productivity

[Graham 1991].

3.1 Affect of SDIO Software Test Requirements on Tool Use

SDIO encourages the use of automated tools to support testing. Candidate tool classes

identified in the Global Protection Against Limited Strikes (GPALS) Software Standards

[GPALS 1992c], for example, are test case generators, performance analyzers, complexity

analyzers, and regression analysis tools. The use of source code standards checking, formal

verification, and static and dynamic code analysis tools is also discussed. The Trusted Soft-

ware Guide annex to the GPALS Software Standards requires the use of an automated test-

bed for creating, executing, documenting, managing, and analyzing the completeness of all

tests, and for maintaining test documentation. The GPALS Software Quality Program Plan

[GPALS 1992a] requires the use of automated metrics data collection and reporting tools.

Additionally, the SDIO Software Policy [SDIO 1992b] and the SDIO Contract

Requirements Packages (CRPs) Guidelines for Computer Resource Issues [GPALS 1992b]

impose requirements on testing practices that, either directly or indirectly, foster tool use.

These special requirements and their sources are identified in Table 3-I. 'This table also

3-1

Test Requirements PART I

Table 3-1. SDIO Test Requirements

TEST REQUIREMENT POSSIBLE TOOL

mi SUPPORT

Continuous process improvement. Use of concurrent engineer- - 4 Problem reporting, reliability
ing practices to provide continuous improvement in software engi- analysis, cost analysis, progress
neering processes and the visible quality of products. monitoring

Quality evaluation. Data collection and reporting of a minimum ' '4 - '4 Quality analysis
set of software process, product, and management metrics.

Minimum structural test coverage.
i) Structural test coverage for CSU/CSCl and regression testing of '4 '4 '4 Structural coverage analysis

all statement, branches, loops.
ii) Structural coverage and boundary value testing at the unit level ' ' Structural coverage analysis

demonstration of coverage at integration level.

Test traceability. Traceability of requirements, design, and code to 4 "4 4 Requirements tracking, test
tests and test results. planning

Design and code inspections. Formal inspections for all software ' ' Browsing
designs and code products.

Review. Review of CSU tests and results. 4 '1 Progress monitoring

Testable requirements. Demonstration of an objective and feasi- '4 Requirements tracking, test
ble test of whether each requirement is met. planning

Functional testing. The process of exercising a system under - '4 Test data & testhed generation,
operational conditions to determine that specified functional functional coverage analysis
requirements are implemented correctly.

Reliability measurement. Statistical techniques used to reduce - Problem reporting, reliability
observed software defects to acceptable limits. analysis

Random testing. In addition to other methods for generating test '4 Test data & testbed generation
input, random input generated to overcome any test bias.

Penetration testing. Penetration tests required as part of establish- '
ing software trust.

Regression testing. Retest modified software to verify that "' ' - Regression & change analysis,
changes have not caused unintended effects and software still requirements tracking, test
meets the requirements. planning

Test progress tracking. Progress tracked and compared to the Test planning, cost analysis,
Software Test Plan. progress monitoring, problem

reporting, requirements track-
ing

Static and dynamic code analysis. Complexity, structure, and ' Static and dynamic code analy-
style assessment, and checking for language violations, unused sis, test data & testbed genera-
code or data. tion

Source code standards compliance. Code portability and style '4 Auditing, complexity analysis,
assessment. structure analysis

Test repeatability. The ability to repeat a test with the same inputs '4 Test planning & documenta-
and operating conditions to yield the same results. tion, testbed generation

3-2

PART I Test Requirements

identifies the types of testing tools that can be expected to increase significantly the cost

effectiveness of the associated test activities.

3.2 Affect of the SEI Process Maturity Model on Tool Use

Starting in FY93, SDIO will require evaluation of contractor software engineering ca-

pabilities using the SEI PMM. This evaluation will be routinely conducted as part of source

selection activities, and yearly during the course of a contract, by an independent team of
evaluators. Contractors will be encouraged to perform annual self-appraisals. The PMM is

used to rank software engineering capabilities as the following:

" Level I - Initial. The software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined and success depends on individual effort.

"* Level 2 - Repeatable. Basic project management processes are established to track
cost, schedule, and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

"* Level 3 - Defined. The software process for both management and engineering activ-
ities is documented, standardized, and integrated into an organization-wide software
process. All projects use a documented and approved version of the organization's
process for developing and maintaining software.

- Level 4 - Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and
controlled using detailed measures.

"* Level 5 - Optimized. Continuous process improvement is enabled by quantitative
feedback from the process and from testing innovative ideas and technologies.

As part of the evaluation, the PMM queries the use of automated requirements trackers, test

data generators, coverage analyzers, complexity analyzers, cross-referencers, and interac-

tive source-level debuggers. The testing-related questions that ate asked in determining the

software engineering capability level are listed in Table 3-2. This table identifies the types
of testing tools that could be used to support the identified activities. The PMM also ad-

dresses the use of process and product measures for monitoring the status and quality of
both the developing product and the development process. In this case, data collected in the

course of testing activities can serve several purposes. In addition to supporting the deter-

mination of the effectiveness of actual testing activities, this data provides valuable insight

into other development activities such as defect prevention, training, and software quality

assurance. Test-related data can also be used in the assessment of the benefits and effec-

3-3

Test Requirements PART I

tiveness of existing and new technology. Test tools can support the collection of much of

this data.

The PMM is currently being revised. The new version, called the Capability Maturity

Model [Paulk 1991], extends the information sought on testing practices, such as the fol-

lowing:

Table 3-2. PMM-Implied Test Requirements

KEY AREA PMM QUESTIONS POSSIBLE. TOOL SUPPORT

Are statistics on software code and errors gathered? 2 Problem reporting,
static analysis

Are code and test errors projected and compared to actuals? 4 Problem reporting,
test planning

Are profiles maintained of actual versus planned software 2 Progress monitoring,
units completing unit testing over time? test planning

Process Metrics Are profiles maintained of actual versus planned software 2 Progress monitoring,
units integrated over time? test planning

Is test coverage measured and recorded for each phase of 4 Coverage analysis
functional testing? I

Are software trouble reports resulting from testing tracked to 2 Problem reporting
closure?

Is test progress tracked by deliverable software component 2 Progress monitoring,
and compared to the plan? test planning, cost

analysis

Is error data from code reviews and tests analyzed to deter- 4 Problem reporting
mine the likely distribution and characteristics of the errors
remaining in the product?

Data Management Are analyses of enrors conducted to determine their process- 4 Problem reporting
& Analysis related causes?

Is a mechanism used for error cause analysis? 5 --

Is software productivity analyzed for major process steps?- 4 Progress monitoring

Is there a mechanism for assuring that regression testing is 2 --

routinely performed?

Process control Is there a mechanism for ensuring the adequacy of regression 3 Change analysis.
testing? coverage analysis

Are formal test case reviews conducted? 3

Are standards applied to the preparation of unit test cases? 3 DoD document gen-
eration

Documented
Standards & Are coding standards applied to each project? 2 Auditing
Procedures

Are formal procedures applied to estimating software develop- 2 Progress monitoring,
ment schedules/cost? test planning, cost

I I analysis

3-4

PART I Test Requirements

• Verification of software requirements, design, and code according to the project's
defined software process.

0 * Use of formal criteria to determine readiness for any level of testing.
• Review of test plan, test procedures, and test cases by peers of the developers of the

plan and procedures before they are considered ready for use.
* Appropriate change of the test plan, test procedures, and test cases whenever the allo-

cated requirements, software requirements, software design, or code being tested
changes.

• Determination of the adequacy of testing based on the level of testing performed, the
test strategy selected, and the test coverage to be achieved.

• Performance of formal system testing of the software, according to the project's
defined software process, to ensure that the software satisfies the software require-
ments.

* Performance of acceptance testing of the software, according to the project's defined
software process and approved acceptance test plan, to demonstrate to the customer
and end users that the software satisfies the allocated requirements.

- Maintenance of consistency across the software engineering products, including the
software plans, allocated requirements, software requirements specification, software
design, code, test plans, and test procedures.

Here again, test tools can be expected to play an important supporting role.

3.3 Affect of the Software Metrics Program on Tool Use

No set of metrics for software project management has gained widespread acceptance

by software developers. Accordingly, the GPALS CRWG on Software Quality Improve-
ment and Standards (SQI&S) has developed a Software Metrics Evaluation Plan (SMEP)

[SDIO 1992a] designed to evaluate and provide SDIO with recommendations on metrics

and metrics tools that can be implemented SDI-wide. This on-going program will involve

the evaluation of several sets of metrics and metrics tools on a number of different SDI soft-
ware development projects. The first evaluation is expected to proceed through 1993 and

will be conducted on the SDI Level 2 System Simulator (L2SS).

The SMEP considers three functional classes of metrics: management, process, and

product metrics. The metrics chosen for initial evaluation include those identified by the

Army's Software Test and Evaluation Panel (STEP) [U.S. Army 1992]. Metrics from the

Air Force's Software Management Indicators [AFSCP 1986] and from Martin Marietta's

Pro-90 Software Metrics Handbook [Martin Marietta 1991] will be used to estimate com-

3-5

Test Requirements PART I

puter resource use. Table 3-3 identifies specific SMEP metrics and the types of tools that

support their evaluation.

Table 3-3. Software Metrics Plan Implied Test Requirements

CRWG
Evaluated Tool

Support
METRIC METRIC POSSIBLE TOOL SUPPORT

TYPE

Sizing Cost modeling 7 -

Management Costing, Schedule, Manloading Cost modeling

Computer Resource Utilization --

Requirements Analysis Requirements tracking

Nonconformance Reporting Problem reporting
SDP & Software Standards Auditing 0
Utilization of Software Tools Tool inventorying

Process Configuration Management Change control
Change Summary Process Problem reporting
Productivity Measures Progress monitoring -T

Development Progress Progress monitoring 0
Cost Cost analysis

Defect Density Problem reporting

Maintainability Quality analysis - - T
Cyclomatic Complexity Complexity analysis - T 7
I1) Statements Quality analysis, static analysis - -

Product Entry & Exit Points Quality analysis, static analysis

Volume Complexity analysis T
Portability Quality analysis - 7
Reliability Reliability analysis -

Documentation Document generation -

To date, the CRWG has sponsored the examination of the following five tools to assess

their support for the application of the SMEP metrics in the L2SS evaluation [Martin Mari-

etta 1992]:

" Software Architecture, Sizing, and Estimating Tool (SASET). A cost, schedule, and
sizing model that provides software development estimates.

"* Software Problem and Change Report (SPCR). Tracks and reports on nonconforming
conditions and the status of closure and corrective actions.

3-6

PART I Test Requirements

"* Analyze. Estimates productivity in terms of the ratio of the number of executable
lines of code to the total lines of source code and collects statistics on source code.

-*Ada Measurement and Analysis Tool (ADAMAT). Collects some 150 parameters to
estimate software reliability, maintainability, and portability.

"* Software Quality Management System (SQMS). Collects parameters to estimate soft-
ware reliability, complexity, and a quality index.

3-7

PART I Approach & Methods

4. APPROACH AND METHODS

The overall approach taken to this work was to identify suppliers of testing tools, select

tools for examination, and apply the selected tools in the testing of sample pieces of code.

The tools examined to date are all available independently of any particular computer-aided

software engineering (CASE) system or Ada development environment. This section also

summarizes the types of testing support provided by these larger-scale products so that their

testing capabilities can be contrasted with those provided by the independent tools.

4.1 Tool Selection

Nearly four hundred suppliers of over six hundred tools were identified. From this ini-

tial set of suppliers, a short list was prepared of those tools that support static and dynamic

analysis of Ada code, test management, and problem reporting. Information was sought

from the appropriate suppliers. In several cases, suppliers gave in-house demonstrations of

their tools. Additional criteria were then applied to refine the short list to be compatible

with the resources available for tool examination. To ensure that the results apply to the
largest possible audience, it was decided that selected tools should be essentially indepen-
dent of processor architecture. Consequently, tools such as non-intrusive coverage moni-
tors which require special purpose hardware were not considered.

Tool selection also considered work performed by other groups. The GPALS CRWG
has examined and reported on five related tools. Most of these tools are available on VAX
or Sun platforms. The Air Force Software Technology Support Center (STSC) has reported
on several categories of software tools, testing tools being one of these categories [Sittenau-
er 1991]. The role of the STSC is to assist Air Force Software Development and Support
Activities in the selection of technologies that improve the quality of Air Force software
products and increase the productivity of its efforts; the focus is on the long-term develop-

ment and support of Mission Critical Computer Resources (MCCR) software. STSC
looked at test tools that support Ada, assembler, ATLAS, C, Fortran, and Jovial program-
ming languages running on DEC/VAX equipment, HP/Apollo and Sun workstations, or
IBM and Macintosh personal computers (PCs). The STSC 1991 report provides half-page
descriptions of some twenty eight tools, and tool critiques based on hands-on application
for eight of these tools.2 Table 4-1 identifies the tools examined in the CRWG and STSC
studies. Care was taken not to duplicate this previous work.

4-1

Approach & Methods PART I

Table 4-1. Tools Examined In the CRWG and STSC Studies

LANGUAGES TEST
SUPPORTED CAPABILmES

TOOL
STUDY NAME TOOL SUPPLIERNAME E• " • •.

S + t L~

STSC Automator qa Direct Technology + + + + + '4
AutoTester Software Recording Corporation + + + + +

Bloodhound Goldbrick Software + + + + + .

Logiscope Verilog, Inc. -T - T 7 "J
PC Metric SET Laboratories, Inc. 7 7 - 7 7 -

VAX PCA Digital Equipment Corp. * * * * *

VAX SCA Digital Equipment Corp. * * * * *

Test Manager Digital Equipment Corp. + + + +- +

CRWG I ADAMAT Dynamics Research Corp. 7
Analyze Martin MariettalS I-- --- --

SASET Martin MariettaS + +is + +

SQMS Martin Marietta IS q q 7 7 7 7 7 7
SPICE Martin Marietta IS + + + + + I I I 1 1

+ - Language independent
• - Most VAX supported languages

Table 4-2 identifies the tools already examined in the IDA study and Table 4-3 identi-

fies several additional tools awaiting examination as part of this ongoing work. In most 0
cases, this latter group are new tools due to be released late in 1992 or early in 1993. Some

offer unique capabilities that fill identified gaps in testing tool functionality. PARTAMOS,

for example, is expected to provide for reproducible testing of concurrent Ada software.

Others provide capabilities that are, as yet, not commonly available. For example, Ada- 0
ASSURED and the Ada Quality Toolset will check for conformance of code with the Soft-

ware Productivity Consortium (SPC) Ada style guidelines [SPC 1991] selected by SDIO.

The U.S. Government is sponsoring development of ARC SADCA, and NATO the devel-

opment of the Test Support Toolset of the NATO Ada Programming Support Environment 0

2. The 1992 update of this report, divided into two reports Test Preparation, Execution, and Anal-
ysis Tools Report [Price 1992a] and Source Code Static Analysis Test Tools Report [Price 1992b],
does not include any tool critiques.

4-2

PART I Approach & Methods

Table 4-2.Tools Examined In the IDA Study

LANGUAGES TEST
SUPPORTED CAPABILITIES

a
S '

TOOL NAME TOOL SUPPLIER a

++ t C

ADADL Processor Software Systems Design - -

AdaQuest General Research Corp. -"- -

AutoFlow-Ada AutoCASE Technology T T - T-
DDTs QualTrak Corp. . .+ + +

EDSA Array Systems Computing, Inc. --
GrafBrowse Software Systems Design T -- -
LDRA Testbed Program Analysers, Ltd. T T F T T T T
Logiscope Verilog, Inc. . T T 7 - 7
MALPAS TA Consultancy Services, Ltd. T T T T
Metrics Manager Computer Power Group, Inc. + + + + +

QES/Manager Quality Engineering Software, Inc. + + + + + 7-
QualGen Software Systems Design -- - - - -
S-TCAT Software Research, Inc. T- T 7 - - 7 T
SQA:Manager Software Quality Automation + + + + + 7 T -

SRE Toolkit Software Quality Engineering + + + + +
SoftTest Bender & AMsociates + + + + +

T Programming Environments, Inc. + + + + + .
T-PLAN Software Quality Assurance, Ltd, + + + + + 4 -

TBGEN Testwel Oy " 7 7
TCAT SofjwLe Research, Inc. 7 7 T T 7 T
TCAT-PATH Software Research, Inc. 7 7 - T - T
TCMON TeatwellOy 0 7 7 -

TD ~en Software Research, Inc. + + + . . -

TSCOPE Software Research, Inc. + + + + +
TST STARS Foundation Repository 7 T
Test/Cycle Computer Power Group, Inc. + + + + + 7 - -

TestGen Software Systems Design 7 7- T
+- - -z+ - Language independent
F - Future capability

(APSE). Both of these toolsets are expected to provide a broad range of static and dynamic testing ca-

pabilities.

4-3

Approach & Methods PARTI I

Table 4-3. Tools Planned for Future Examination

LANGUAGES TEST
SUPPORTED CAPABILITIES

TOOL DEVELOPER/ 0 0SUPPLIER <

ARC SADCA Optimization Technology, Inc. - - 7 - - 7
Ada-ASSURED GrammaTech, Inc. T --

Ada Quality Toolset Marlstone Software Technology, Inc. T
Battlemap Analysis Tool McCabe & Associates TT -7
CaseQMS A 'v ý & Computer Systems, Inc. + + + + +

Instrumentation Tool for Ada MLCabe & Associates -

PARTAMOS Alcatel Austria - - - - •
QES/Architect Quality Engineering Software, Inc. + + + + + 7 -

QES/Programmer Quality Engineering Software, Inc. + + + + +

QTET QualTrakCorp. + + + + +.7
QUES Software Productivity Solutions, Inc. q

QualityTEAM Scopus Technologies + + + + +

Requirements Tracer Teledyne Brown Engineering + + + + +

SLICE McCabe & Associates T - 7 7 - - 7
START McCabe & Associates + + + + +
SQMS Software Quality Tools Corp. + + + + + 7 --

SWEEP Software Productivity Consortium + + 1 + + + - 1
+ - Language independent

4.2 Method of Examination

Each static and dynamic analysis tool was used to test several small Ada programs. The goal of

these initial tool applications was to allow the examiner to gain familiarity with overall tool oper-

ation. Each tool was subsequently applied to the same Ada program. This software was the Ada

Lexical Analyzer Generator program that creates a lexical analyzer or "next-token" procedure for

use in a compiler or other language processing program [Meeson 1989]. It was developed for the

Software Technology for Adaptable, Reliable Systems (STARS) program and consists of several

Ada subprograms with a total of over three thousand lines of code. In the absence of a historical

test database, the test management and problem reporting tools were examined using the sample

test database provided by each supplier.

4-4

PART I Approach & Methods

Generally, suppliers provided their latest tool release for the examination. In a couple

of cases, only demonstration versions were available. In each such case, however, the dem-

onstration version was fully functional and only limited by the number of inputs it could

accept.

4.3 CASE System Support for Software Testing

A recent survey of CASE vendors, performed on behalf of the U.S. Air Force, found
that nearly 25% of the examined products claim explicit support for software testing activ-
ities [Hook 1991]. The goal of incorporating testing support into a CASE system is to pro-
vide easy access to testing tools and so facilitate continual evaluation of evolving software.
This evaluation can be used to ensure timely detection of faults and provide the software
developer with feedback to guide the development process, thus encouraging a better inte-
gration of testing with other software development activities.

Table 4-4 indicates the types of test support provided by current CASE systems. At the
code level, coverage and performance analysis are the most common types of support pro-
vided. These capabilities are similar to those provided by independent test tools and are
sometimes available as stand-alone products. However, it is during earlier stages of soft-
ware development that CASE systems hold the most potential for improving the integration
of testing with other development activities. Several CASE tools provide requirements
traceability, use simulation and, occasionally, executable specifications to indirectly sup-
port testing. Recently, more direct support in terms of test generation, test plan tracking,
and specification analysis based on user-defined rules has become available. Examination
of testing tools that are part of a CASE system is still needed. In particular, the question of
how to achieve the necessary integration of independent and CASE-based testing tools to
provide a comprehensive automated test capability must be addressed.

4.4 Development Environment Support for Software Testing

A previous IDA study identified twenty eight U.S. companies that supply validated Ada
compilers [Hook 1991]. All these vendors provide a minimum set of tools for Ada code de-
velopment including the compiler, editor, debugger, library manager, and run-time envi-

ronment. The Ada language definition allows Ada compilers to provide considerably more
static analysis than is possible for older languages such as Fortran. Capabilities such as type

4-5

Approach & Methods PART I

checking and range checking, for example, are always provided, The other types of testing

support provided vary quite considerably. As shown in Table 4-5, coverage analysis, per-

formance analysis, and cross-referencing are the most common testing capabilities support-

ed.

Some vendors (DEC, IBM, and Verdix) demonstrate a movement towards providing an

integrated development environment that encompasses most phases of the software devel-

opment life cycle. In this case, for the implementation phase, there are tool sets offered with

the compiler. For requirements specification and design, these development environments

support various off-the-shelf CASE systems.

0

4-6

SPART I Approach &Methods

U00
.318jdaHa MEGqlsajF-I I I F

0d C

SSIsSIOUV a euu~oj~

z
0 r_.0

CL 1) d

0L 04 F, C0

uopi zjnuhnS
0-

0 .- C

.0 4) In)

Lb w cccc

- I- 1w

I-l u I- n

0.0

&l .. -4 -

U, ~4)
U a- u ~ ~ cl

u cc
I-go

acE U, C

0 ,~ 1 * ,m

0 w0

LE 21 4q

U, .
2

4-7

Approach &Methods PART I

Huli)odall walqoJw -

JaSBURN1 ISI -

s!skIuUV inaupuadoa

S!SkAIuU UO!SSsaJia

spisiffuv japjo uotiupdwo: -

tioddnS 0op331JUA

C

E0I4~U eUtJJa

S
w -

C~~ .123II I

CC

C 0

EE

E* 0 LE

> 0 EEtZE E. E-
OF IO C6 0

C
a --- 0

4 ~~C' N
3 ~ .uE

E~E~

CL 0<

;a L9 d y
LU &M u C 2

E 0

Z 13

I- L 40I I i cýIe 0 Im0ý ý- 1

4-8

PART I Test Management

5. TEST MANAGEMENT

This section identifies key capabilities of the examined tools in terms of the support

provided for test management. It is intended to provide a quick overview of the types of

automated support available in each area and insight into how this support can be used to

facilitate software testing.

Previously Table 4-2 identified six tools as providing test management capabilities and
one other, LDRA Testbed, as currently being extended to provide these capabilities in the
near future. The functionality of these tools is further detailed in Table 5-1.

Table 5-1. Test Management Capabilities of Examined Tools

Reqs Progress
Test Planning & Documentation Map Monitoring

St
06 W

TOOLNAME pt

COCF -al n ' Futur capa0lit

AV0

Two ~ ý1 adiioa tools urn-es an Taeasodsuse.Ato gh is. Urpel clase

LDRA Testbed F
Metrics Manager
QESaManager mntrg
SQA:Manager T T-T T T ------1----- - --

_______ TT
T-PLAN T T

STest/ycle 4 qIT Iq 41 TqIq WI IF qq IF
F - Future capability

Two additional tools, SoftTest and T, are also discussed. Although not properly classed

Sas test management tools, both of these provide some support for requirements mapping
and progress monitoring.

5-1

Test Management PART I

5.1 Test Planning and Documentation

Test planning is a prerequisite to effective management of test activities. It provides the

base against which required test activities can be scheduled, test resources can be estimated,

and the progress of test activities can be tracked.

Of the examined tools, QES/Manager, SQA:Manager, T-PLAN, and Test/Cycle pro-

vide explicit support for test planning, though they take somewhat different approaches.

QES/Manager and SQA:Manager incorporate a predefined test model that defines the rela-

tionship among test objects such as documents, test cases, and products. In the case of

SQA:Manager this model follows the Institute for Electrical and Electronics Engineers

(IEEE) standard test model [ANSI/IEEE 1983]. The QES/Manager test model groups test

cases into test drivers that specify an execution sequence for those test cases. Test/Cycle

defines the types of permissible test objects, but allows the user to define the links between

these. It is worth noting that software builds are one of Test/Cycles object types, allowing

this tool to explicitly support incremental software development. T-PLAN provides the

most flexibility. It requires a user to start by defining the underlying test model, although

an in-house developed test methodology can be used as the source of the test model if de-

sired.

With the necessary model established, these tools capture similar information for test

cases and groupings of these test cases. They differ in the other types of information cap-

tured. Most significantly, only T-PLAN and Test/Cycle explicitly capture requirements and

trace these to testing data (see Section 5.2), and only SQA:Manager, T-PLAN, and Test/

Cycle explicitly document a test plan. All the tools except QES/Manager do, however, trace

test data to the software items under test. (A capability offered by QES/Manager, unique

among these tools, is the ability to simulate the test data.) Examples of other information

that can be captured by some of these tools include a test schedule and an inventory of test

tools. All these tools provide user-tailorable templates to support data entry.

The tools also differ in their reporting on the contents of the test library. QES/Manager

requires the user to define all report formats, and Test/Cycle provides a range of predefined

report formats. SQA:Manager and T-PLAN support both predefined and user-defined re-

port formats. In addition to the available IEEE standards, SQA:Manager supports applica-

ble DoD standards DoD-STD-2167A and DoD-STD-2168, and military standard MIL-

STD-480.

5-2

PART I Test Management

5.2 Requirements Mapping

The ability to trace the relationship between software requirements and test items pro-

vides valuable insight into the completeness and effectiveness of both test planning and test

execution. It is also a prerequisite for the change analysis that determines the potential

scope of effect of a proposed requirements change. The ability to provide this support is

one of the major differences between the tools in this category. It is available with T-PLAN

and Test/Cycle.

Test/Cycle uses requirements validation matrices to cross-reference requirements

against software builds, test runs, and test cases. These matrices can be examined to ensure

that all requirements are appropriately covered, providing quick insight into test planning

completeness. T-PLAN links requirements to test cases via test conditions that can be

grouped to reflect, for example, valid/invalid categories, system releases or versions. It also

reports on the test items affected by a change to a test requirement, in addition to the change

analysis provided for other types of test items.

SoftTest and T provide requirements traceability in a different way. Here a require-

ments specification is used to guide the generation of test cases. Hence, test cases are auto-

matically linked to defined functional requirements. Both tools provide matrices that give

a quick visual guide to the cross-referencing between functional requirements and test cas-

es.

5.3 Test Progress Monitoring

Test progress monitoring is important for effective management of test activities. By

tracking actual progress against planned progress, managers can get an early indication of

potential schedule slips to support timely decision making. The early identification of qual-

ity shortfalls is another piece of valuable information. The data collected during test

progress monitoring can also be used to assess various overall software development indi-

cators and quality indicators (see, for example, [AFSCP 86, AFSCP 87]). Progress moni-

toring is largely based on a log of testing activities. Data is entered into the test log

manually or, in some cases, can be imported from a test execution tool.

SQA:Manager and T-PLAN capture similar information for the test log. Using this in-

formation, SQA:Manager reports on the status of each test case, that is, the number of tests

passed, failed, and aborted, and the number of incidents raised. T-PLAN reports whether

5-3

Test Management PART I

each test procedure has been tested, date of last test, and whether a re-test is required, to-

gether with details on the conduct of the individual tests performed. Using the schedule in-

formation entered for each test specification, T-PLAN also compares estimated and actual

levels of effort to determine the outstanding effort and report on the percentage completion.

This reporting is available for test planning, testing, regression testing and review activities.

Test/Cycle reports on the validation status of requirements, builds, and test runs in

terms of the percentage of test cases passed. It provides this for each leaf requirement or

requirement subtree in its requirements hierarchy. Additional reports summarize the overall

status of requirements, builds, and test cases, whereas a test log report provides detailed in-

formation on the status of individual test cases.

SoftTest and T report on the requirements coverage achieved through testing to date.

SoftTest reports requirements coverage in terms of the number of functionil variations test-

ed with respect to those testable; this requires the user to manually enter the results of test

case execution. T also maps user-supplied test results to requirements to report on test ad-

equacy with respect to requirements coverage. It provides a test comprehensiveness mea-

sure that, at the user's choice, combines requirements, input/output, and structural cover-

age.

Reliability analysis is also used to monitor test progress against a stated objective. A

failure intensity objective, for example, specifies the expected number of software failures

per unit of time, whereas a reliability objective specifies the probability of failure-free op-

eration. By looking at the occurrence of software failures during testing activities, it is pos-

sible to estimate the number of defects remaining in a piece of software and determine (with

confidence intervals) the additional time or resources needed to reach the goal objective.

By predicting the reliability of software after modification, these measures can also help to

time the performance of maintenance activities, for example, the addition of new features.

Under the proper conditions, reliability measures can be used to help determine the effec- S

tiveness of particular software engineering practices, or the effects of process improve-

ments.

Many different reliability models have been proposed. The two most common are Mu-

sa's basic execution-time model and the Musa-Okumoto logarithmic Poisson execution- S

time model [Musa 1987]. Both models characterizes failures as a nonhomogeneous Poisson

distribution. SRE Toolkit supports reliability analysis using both of Musa's models, where-

as SQA:Manager uses the Musa-Okumoto model. Both tools provide failure intensity and

reliability reports that include the amount of additional testing time needed to meet a tar-

5-4

PART I Test Management

geted reliability, and an estimation of how many more problems are likely to be found dur-

ing that additional testing. They both support cost analysis. SQA:Manager relates the hours

spent in test activities and in problem resolution to cost rates in a cost base to report the cost

of these activities. Using data on the cost of failure identification and correction, and the

cost of operational failure, SRE Toolkit maps total life cycle, system test, and operational

life costs against a specified failure intensity objective.

SRE Toolkit supports a number of additional features. For example, the user can spec-

ify a failure time adjustment to take account of incremental delivery of software to the sys-

tem test process and a testing compression factor to specify the ratio of field to test

execution time. The toolkit can be instructed to interpret individual failure entries as inde-

pendent failure events or to perform grouped data analysis. A suite of prototype programs

provides further information such as summary statistics for each recording period, esti-

mates of resource usage calendar time parameters from resource usage data, and plots of

completion date for testing and life cycle costs versus failure intensity objective.

In addition to that discussed here, information on the status of identified problems (see

Section 6) and the coverage achieved during dynamic testing (see Section 8.2) also provide
insight into the status of testing activities.

5.4 Productivity Analysis

Productivity data, like quality data, can be used to monitor the efficiency of the software

development process. It supports the identification of those instances where process im-

provements are needed, and the effectiveness of process changes. While several tools sup-

port the collection and analysis of quality data, Metrics Manager is the only examined tool
that provides productivity analysis. As such, it looks at a user-defined Management Infor-

mation System (MIS) function, collecting data on a monthly, quarterly, or annual basis to

monitor the performance of the organization and track the impact of new methods, organi-

zational structures, and technologies. Metrics Manager is supported by an industry database

that allows comparison of organizational data against industry statistics.

5-5

PART I Problem Reporting

6. PROBLEM REPORTING

0 The primary purpose behind problem reporting is to ensure that all identified problems
are addressed. The data inherent in this activity serves several additional purposes. It pro-
vides a valuable insight into both the software status and the progress of development and
test activities. Additionally, it provides much of the data needed to drive continuous process
improvement activities.

Four tools that support problem reporting were examined. One of these, DDTs, address-
es this function exclusively. For SQA:Manager, T-PLAN, and Test/Cycle, problem report-
ing is only one of the types of support provided for software testing. Consequently, it is not
surprising that there are several significant differences between these two types of support.

The capabilities of the tools are summarized in Table 6- 1.

Table 6-1. Problem Reporting Capabilities of Examined Tools

Report D Captr R Stnd. Distrib.
Types Con. Archit.

SS i
0TOOL 02 C-

NAME

SQA:Meag 5 a

T-PLAN -4 q 3
Test/Cycle " 3 q 5

6.1 Report Types and Details Captured

The ability to distinguish among different types of problems, and perform separate
tracking and reporting for each type, is very useful in monitoring the software development
progress and planning further development activities. The common types of problem re-
ports are incident reports, defect reports, and change requests. Only Test/Cycle has all these
problem types, collectively called work requests, built in. Although in its basic form DDTs

6-1

Problem Reporting PART I 0

only distinguishes between defects and change requests, it can be customized to also accept

incident reports. SQA:Manager distinguishes between incidents and defects. T-PLAN

tracks and reports a single problem type, called service queries.

By and large, all the tools capture similar details about identified problems. Data entry

is guided by user-tailorable templates. DDTs allows the provision of supplemental infor-

mation that is kept separately, but linked to a defect report. This additional information can

be used, for example, to include the data files needed to reproduce a problem. The test

item(s) to which problem reports are linked affects the type of tracking that can be per-

formed. SQA:Manager and T-PLAN link them to, respectively, test cases and test specifi-

cations. DDTs and Test/Cycle link problem reports to software items.

DDTs provides a good example of the additional power provided by tools that focus ex-

clusively on problem reporting. Here problems have a specified life cycle defined in terms

of states and state transitions. The system administrator is permitted to modify this life cy-

cle.

6.2 Import Capability

A flexible import facility is a valuable feature. It allows data generated using other

tools to be incorporated in a common problem database. This is useful, for example, when

different problem reporting tools are used, perhaps to cater for different development orga-

nizations or host machines. DDTs and SQA:Manager provide this capability.

6.3 Reporting Capabilities

T-PLAN, Test/Cycle, and DDTs provide predefined report formats. In the case of

DDTs, these reports conform to DoD-STD-2167A and the proposed IEEE standard classi-

fication for software errors, faults, and failures [IEEE 19871. For T-PLAN the available sta-

tistical reports analyze the total numbers of defects, or queries, by classification. Frequency

of defects and defect resolution is also provided, as well as the percentage complete and

outstanding effort required to complete approved changes. Test/Cycle reports provide only 0

work request descriptions and a work request log. DDTs also allows a user to define his

own report formats, as does SQA:Manager. In these cases, a number of predefined report

filters and sorting keys are provided to support reporting based on any problem character-

istic.

6-2

PART I Problem Reporting

SQA:Manager and Test/Cycle report on the costs associated with defect detection and

correction. Of the examined tools, only DDTs provides a capability for automatic weekly

reporting on problems.

In addition to its reporting facilities, DDTs provides advanced search and query func-

tions.

6.4 Standards Conformance

SDIO requires the reporting and tracking of identified problems but does not specify
* how this requirement should be met. Some additional guidance is given in DoD-STD-

2167A. This standard requires, for example, that problems are classified by category (soft-
ware, documentation, or design problem) and are assigned one of five levels of priority. It
also requires analysis of defect trends and the identification of any additional problems in-
troduced by a problem fix.

The examined tools vary in their ability to meet these requirements. As shown in Table
6-1, only DDTs and SQA:Manager provide five priority levels as a default option, al-
though, for the other tools, the user can generally modify the input template to allow a dif-
ferent set of levels. The ability to record problem classifications is highly variable.
SQA:Manager and T-PLAN, for example, allow user-defined categories, whereas DDTs
accepts free-form text for this information. None of the tools provides explicit support for
recording the introduction of new problems as a results of a problem fix. Several pieces of
information can support the analysis of defect trends. Problem classification and details on
when a problem was inserted, detected, and the first opportunity for its detection, for ex-
ample, are all useful. DDTs, SQA:Manager, and Test/Cycle capture at least part of this in-
formation.

6.5 Distributed Architecture

The dedicated problem reporting tool, DDTs, is network based. This tool uses electron-
ic mail to provide automatic notification of changes in problem status and to support remote
problem entry. It also supports multiple projects. DDTs also provides access controls and

various other administrative capabilities. These additional capabilities range from checking
and repairing the database to template definition.

6-3

PART I Static Analysis

7. STATIC ANALYSIS

* Static analysis is used to determine the presence or absence of particular, limited classes

of errors, to produce certain kinds of software documentation, and to assess various charac-

teristics of software quality. Unlike dynamic analysis, static analysis can sometimes be per-

formed on incomplete or partly development products and does not necessitate costly test

environments. It cannot, however, replace dynamic analysis, although it can be used to

guide and focus dynamic testing. Previously Table 4-2 identified fourteen tools as support-

ing static analysis. The functions provided by these tools are summarized in Table 7- 1.

Table 7-1. Static Analysis Capabilities of Examined Tools

Control Flow
Analysis -

W W

TOOLNAME X

IA

A. Wk COi UID
ADADL Processor 7 - - 74
AdaQuest -- F F

AutoFlow-Ada 7 F
EDSA
Graffrowse- - ----
LDRATestbed -4 -7 q 7
Logascope T7 7747
MALPAS T 7-• - -IF -- -- --
QualGen
S-TCAT - 7 7 -

TCAT - - -
TCAT-PATH 7 7 --------
TST _

TestGen 7
F - Future capability

7.1 Complexity Analysis

Complexity measures are put to various test-related uses. McCabe has developed a

* method, called Structured Testing, that uses cyclormatic complexity to guide the selection

7-1

Static Analysis PART I 0

of a minimum set of required paths to test [McCabe 1982]. Complexity measures are also

used to estimate the number of defects present in a piece of software and to identify pieces

of code that are potentially defective.

Models for estimating program complexity have been based on various characteristics

of software structure and semantics. The best-known set of complexity measures are all ap-

plied at the program unit level. They are McCabe's cyclomatic complexity metrics [McCabe

1976] and Halstead's software science metrics [Halstead 1977]. Whereas cyclomatic com-

plexity is control oriented, the Halstead metrics are text oriented. As well as variations on

each of these measures, there are many other program-level measures. In contrast, relatively

few measures for assessing design-level complexity have been proposed. Perhaps the most

common design-level measures are those developed by Mohanty that are based on a call

graph [Mohanty 1976], and basic subtrees, a variation on cyclomatic complexity. Measures

for assessing requirements complexity are similarly scarce and not supported by any of the

examined tools. Table 7-2 identifies the different types of complexity measures that are pro-

vided.

Table 7-2. Supported Complexity Measures

Unit Level Lteg
Level

TOOLNAME _S 3 0 3 =

ADADL Processor - --
LDRA Testbed 7T 7 T 77 T 7 - -

Logiscope - -

MALPAS
TCAT-PATH 7 7 TT T *T
TestGen - - --

7-2

PART I Static Analysis

Twenty years of theoretical and empirical evaluations have failed to produce consistent,

hard evidence of the accuracy of particular measures or on the respective value of alterna-
tive measures. Consequently, these measures should be used as indicators, rather than ab-

solute measures of software properties.

7.2 Data Flow Analysis

Data flow analysis is based on consideration of the sequences of events that occur along

the various paths through a program. It is used to detect data flow anomalies, of which three
types are commonly recognized: (1) a variable whose value is undefined is referenced, (2)
a defined variable is redefined before it is referenced, or (3) a defined variable is undefined

before it is referenced. While the first of these indicates an actual program defect, the latter
two types of anomaly may indicate questionable variable usage rather than specific defects.
Since the analysis technique assumes that all paths through the program are feasible, some
reported anomalies may be superfluous. Data flow analysis also can be used to categorize
procedure parameters as referenced only, defined only, both defined and referenced, or not

used.

LDRA Testbed, MALPAS, and EDSA support static data flow analysis. LDRA Test-
bed performs weak data flow analysis to identify data flow anomalies of the types men-

tioned above. It also analyzes procedures calls across procedure boundaries to report on
procedure parameter usage. MALPAS refines the classification of data flow anomalies. For

example, a data variable that is redefined before it is referenced may be classified as either
an instance where data is written twice without an intervening read, or as data being written
with no subsequent access on a given path. Given a list of procedure input and output pa-
rameters, MALPAS compares these with the classes of data to produce a table of possible

errors. EDSA uses interactive data flow analysis to facilitate program browsing.

7.3 Control Flow Analysis

Control flow analysis is a process of examining a program structure and identifying ma-

jor features such as entry and exit points, loops, unreachable code, and paths through a pro-
gram. This information can be used to determine program complexity and to aid in planning

a dynamic test strategy. It can help to decide on strategies for further analysis, for example,
to identify where it might be beneficial to partition the code to reduce the number of paths

7-3

Static Analysis PART1 0

and, hence, facilitate semantic analysis. The results of control flow analysis can also be

used to prepare a diagrammatic representation of the program structure that can aid a user

in documenting and understanding a piece of software.

Control flow analysis is provided by the majority of tools that support static analysis.

MALPAS, TestGen, LDRA Testbed, and TCAT family all report on unreachable paths.

These may be generated as a result of program syntax, for example, as a result of end if

statements, or the position of a return statement. Even though they do not necessarily imply

an defect, the occurrence of unreachable paths should be checked. Some of the examined

tools go farther. LDRA Testbed, for example, also reports on unreachable branches and

other structural units.

Several of the tools use control flow analysis to generate a graphical representation of

a program's structure as a logical flow chart or directed graph. This allows visual inspection

of program structure and complexity, and can facilitate program understanding at the unit

level. AutoFlow-Ada, LDRA Testbed, Logiscope, TCAT, and TCAT-PATH all generate

fairly sophisticated graphical representations of a program's structure. AutoFlow-Ada, in

particular, provides a user with considerable flexibility in generating a high-quality graph-

ical flow chart. TestGen uses textual facilities to produce a more primitive graph represen-

tation. Although MALPAS does not directly produce a directed graph, its list of nodes, with

identification of successor and predecessor nodes, helps a user to draw this graph. Graphi-

cal representation of the calling relationship between program units also facilitates program

understanding. GrafBrowse, LDRA Testbed, Logiscope, and S-TCAT generate call graphs

or call trees.

The identification of paths through a program is useful for estimating the resources

needed for dynamic analysis and then guiding this testing. AdaQuest, LDRA Testbed, Lo-

giscope, MALPAS, TCAT-PATH, TST, and TestGen all provide this capability. Even

more useful, LDRA Testbed, Logiscope, and TestGen explicitly identify the values of log- 0
ical conditions necessary to cause particular paths to be followed. Logiscope, TCAT,

TCAT-PATH, and S-TCAT report on various code statistics. These statistics range from

measures such as the number of each type of operator and operand occurring in the soft-

ware, to measures of the average, minimum, and maximum path length. EDSA provides 0

interactive control flow analysis to facilitate browsing along program paths.

MALPAS, LDRA Testbed, and Logiscope perform structure analysis to verify a pro-

gram's conformance to the principles of structured programming. Here LDRA Testbed

matches templates of acceptable structures with the directed graph of a program on a mod-

7-4

PART I Static Analysis

ule by module basis. Matching structures are successively collapsed to a sin,,c noae until

either a single node is left, indicating a structured program, or an irreducible state, indicat-

ing an unstructured program. MALPAS and Logiscope perform a similar reduction to eval-

uate the structure.

7.4 Information Flow Analysis

Information flow analysis is used to examine program variable interdependencies. This

helps to isolate inadvertent or unwanted dependencies, to indicate how a program can be

broken down into subprograms, and to identify the scope of program changes. For security

applications, it can be used to aid the identification of spurious or unknown code. Addition-

ally, it supports dynamic testing by identifying which inputs need to be exercised to affect

which outputs.

Both LDRA Testbed and MALPAS provide this capability. Currently LDRA Testbed

is limited to identifying backward dependencies on a procedure by procedure basis and

characterizes variables as strongly or weakly dependent. Future versions of LDRA Testbed

will include forward dependencies to identify variables that can be affected by a particular

input variable. It will also support information flow dependence assertions to allow com-

parison of expected dependencies with actual dependencies.

MALPAS identifies all of a program's inputs and examines each executable path to

identify dependencies for each output variable. These dependencies include the input vari-

ables, constants, and conditional statements on which it depends. It reports on program unit

inputs and outputs, which may be more than those passed as parameters. MALPAS also

identifies redundant statements.

7.5 Standards Conformance Analysis

Auditors are used to check the conformance of a program to a set of standards. For SDI

software, the SPC Ada Quality and Style: Guidelines for Professional Programmers [SPC

1991] defines the required standards. Although none of the tools reported here supports

these guidelines, ADAMAT discussed in the CRWG study does. Two new tools, Ada-AS-

SURED and the Ada Quality Toolset, are advertised as providing this support.

7-5

Static Analysis PART I

LDRA Testbed checks conformance to a set of standards that are of interest to the pro-

gramming community; this includes much of the Safe Ada Subset. Individual standards can

be disabled and the user can weight particular standards or specify acceptance limits, where

appropriate. TST reports on conformance to a set of portability standards.

7.6 Quality Analysis

As already mentioned, several tools report on particular quality characteristics such as

complexity and compliance with standards. There are, however, many other quality char-

acteristics that provide insight into, for example, code maintainability and portability.

One of the examined tools, Logiscope, employs the Rome Air Development Center

(RADC) quality metrics model to allow user-defined quality measurement at three levels

of abstraction [RADC 1983]. At the lowest level of the model, the user can defined upper

and lower bounds for a predefined set of primitive metrics. Logiscope distinguishes be-

tween unit-level metrics and architectural metrics, reporting on both. The user can then

specify algorithms to weight and combine the primitive metrics into composite metrics.

These composite metrics are, in turn, used to define quality criteria that allow classifying

components as, for example, accepted or rejected, based on their computed quality values.

QualGen analyses both design and code complexity and currently interfaces with Lotus

1-2-3 for quality reporting. It provides some 200 primitive metrics which, via Lotus, can be

combined into user-defined higher level measures. Software Systems Design, the develop-

er of QualGen, is currently mapping the correspondence of QualGen metrics to the SPC

Ada style guide.

7.7 Cross-Reference Analysis 0

The information acquired from cross-referencing program entities serves many purpos-

es. Perhaps one of the most important of these is identifying the scope of a program change

or aiding in the diagnosis of a software failure.
S

The ADADL Processor provides extensive cross-referencing capabilities. It reports on

the cross-referencing between program units, objects, and types. It also reports on the oc-

currence of with and pragma statements; the occurrence of interrupts, exceptions, and ge-

neric instantiations; and the usage of program unit renaming. LDRA Testbed cross-

7-6

PART I Static Analysis

references all data items and classifies them as global, local, or parameter and also cross-

references procedure usage. Through its browsing capabilities, EDSA provides interactive

cross-referencing of data items and Ada objects.

7.8 Browsing

A browser facilitates program understanding by allowing the user to create and present

different views of the software. This may include views that show the same piece of soft-
ware at different stages of development and views that omit some information in order to

focus on other details. A browser also may provide the user with the ability to follow the
control flow or data flow in browsing through code. These capabilities may be used for sev-

eral purposes, for example, to aid in reviewing a program or in diagnosing the cause of a

software failure.

EDSA focuses on browsing source code at the unit level; it allows browsing forward or

backward via data flow or control flow. The user can construct views that suppress or omit

irrelevant code details to help him to focus on the concern at hand. Special annotations are
available to keep track of the progress of formal code verification. GrafBrowse chiefly op-

erates at the integration level. Here the user can move through graphical invocation hierar-
chies (or declaration or call-by hierarchies), pulling up the relevant pieces of code as

required. The TCAT family of coverage analyzers also allows moving between graphical

depictions of program and module structure and the associated source code.

Although not examined in the course of this work, the new version of Logiscope also

supports source code browsing.

7.9 Symbolic Evaluation

This type of static semantic analysis provides a more complete examination of a pro-

gram's operation. Instead of actual input data, symbols such as variable names are used to

simulate program execution. This allows the reporting of the mathematical relationships

between inputs and outputs for each semantically possible path. It has three primary uses.

The relationships can be compared against a program specification to check for consisten-
cy. The identified path condition, together with the expression detailing the set or range of

input data which causes this path to be executed, supports test data generation. Finally, the

7-7

Static Analysis PART I

relationships can aid in determination of the expected output for a set of test data. Only

MALPAS provides this very useful capability.

7.10 Specification Compliance Analysis

Specification compliance analysis takes semantic analysis a step further by automati-
cally comparing a program against its formal specification to identify deviations. This type
of analysis is very powerful, but requires additional work on the behalf of the user.

Here again, MALPAS was the only examined tool that provides this capability. It re-
quires program specification details to be embedded in its intermediate language. (These
details may already be available if a formal specification language such as Z, VDM, or OBJ

is being used in the development effort.) The output of the compliance analyzer is a set of
threat statements that, if the program does not meet the specification, presents the relation-

ships between inputs that cause a deviation to occur.

7.11 Pretty Printing

A useful documentation capability, pretty printing is provided by the ADADL Proces-
sor, AutoFlow-Ada, EDSA, LDRA Testbed, and TST.

7

0

7-8

m

PART I Dynamic Analysis

8. DYNAMIC ANALYSIS

This section reports on the capabilities provided by the examined tools for dynamic

analysis where software is evaluated based on its behavior during execution. Dynamic anal-

ysis is the primary method for validating and verifying software. Additionally, it is the

source of much of the information used in monitoring testing progress and software quality.

Traditionally an unstructured and labor-intensive activity, dynamic analysis is a significant

cost diiver. This study examined the dynamic analysis capabilities of fourteen tools. Table

8-1 identifies the particular functionality provided by each.

Table 8-1. Dynamic Analysis Capabilities of Examined Tools

Coverage Prof- Test Data
Analysis iling Generation •6 C6-

TOOLNAME

AdaQuest F q q- -F
LDRA Testbed TT F T7 7T
Logiscope -------------- T
SoftTest -

S-TCAT T
T - -

TBGEN
TCAT -----

TCAT-PATH -7

"TCMON
TST T -

TDlen _7
TSCOPE' TT-- - - - - - - -
TestGen -

1. Used in conjunction with TCAT, TCAT-PATH, or S-TCAT to animate coverage results.
F - Future capability

8.1 Assertion Analysis

An assertion is a logical expression specifying a program state that must exist, or a set

of conditions that program variables must satisfy, at a particular point during program ex-

ecution. Assertion analysis is used to determine whether program execution is proceeding

8-1

Dynamic Analysis PART 1

as intended. In some cases, it may be desirable to leave assertions permanently in the code

to provide a self-checking capability. When present in code, even if commented out, asser-

tions can provide valuable documentation of intent.

Of the examined tools, only LDRA Testbed currently supports dynamic assertion anal-

ysis. Assertions are embedded in Ada comments and can be used to (1) specify pre- and

post-conditions for a section of code, (2) check whether inputs satisfy pre-determined rang-

es, and (3) check whether loop and array indices are within bounds. Should any assertion

fail, a user-tailorable failure handling routine is executed. Assertion checking can be

switched on or off, allowing assertions to remain permanently in the code.

8.2 Coverage Analysis

Coverage analysis is the process of determining whether particular parts of a program

have been exercised. Its importance is illustrated by academic studies and the experience

of the software testing industry that have shown that the average testing group that does not

use a coverage analyzer exercises only 50% of the logical program structure. As much as

half the code is untested and therefore many errors may go undetected at the time of release.

By identifying those parts of a program that have not yet been executed, a coverage analyz-

er can help to ensure that all code is exercised, thus increasing confidence in correct soft-

ware operation. By measuring the coverage achieved during execution with particular

set(s) of test data, these tools also provide a quantitative measure of test completeness.

Some tools also aid in determining the test data needed to increase the coverage. Although
coverage analyzers do not directly measure software correctness, they are valuable tools for

guiding the testing process and monitoring its progress.

There are two basic types of coverage analyzers. Intrusive analyzers instrument code

with special statements, called probes, that record the execution of a particular structural

program element. The addition of extra code in the program incurs both a size and timing

overhead. The alternative, non-intrusive analyzers, requires special hardware and is not ad-

dressed in this report.

8.2.1 Structural Coverage Analysis

Several levels of structural test coverage have been proposed. The basic levels for unit

testing are statement, branch, and path coverage which require, respectively, each state-

8-2

PART I Dynamic Analysis

ment, branch, or path to be executed at least once. They impose increasingly stringent lev-

els of testing with statement coverage being the weakest and path coverage the strongest.

Since path coverage can be difficult to achieve, various additional levels that lie between

branch and path coverage have been proposed. The best known of these additional levels

are McCabe's Structured Testing and Linear Code Sequence and Jumps (LCSAJs) [Hen-

nell 1976].

Although unit-level measures can be applied during integration and system testing, they

do not provide the additional information that is pertinent at these levels. During integration

testing, for example, a measure of the extent to which the relationships between calling and

called units has been executed is useful. Functional measures provide a more appropriate

measure of test coverage for system testing (see Section 8.2.3).

Table 8-2 summarizes the structural coverage analysis features of the examined tools.

As shown in this table, the examined tools vary considerably in the support they provide.

The requirements for a test driver to execute the instrumented program is one of these dif-
ferences. LDRA Testbed and TCMON automatically generate this test driver, as does
TestGen under certain circumstances. The generated test drivers also differ. For example,

TCMON provides a command-driven test driver that allows the user to explicitly control

the handling of generated trace files. Where necessary, both LDRA Testbed and TCMON

allow special actions so that this interface can be omitted. There are other significant dif-

ferences. For example, LDRA Testbed provides different handling of trace data to support

host/target testing. It also separates out the data collected from a concurrent program to al-

low separate reporting for each task.

8.2.2 Data Flow Coverage Analysis

Data flow coverage has been proposed as another measure of test data adequacy. While

the traditional structural coverage testing approach is based on the concept that all of the

code must be executed to have confidence in its correct operation, data flow testing is based

on the concept that all of the program variables must be exercised.

While there are several tools that provide this capability for C programs, production

quality tools for data flow testing of Ada code are not yet available. The data flow testing

capability of LDRA Testbed, however, is currently under beta testing.

8-3

Dynamic Analysis PART I

Table 8-2. Structural Coverage Analysis Characteristics

Unit-Level Coverage Reporting

- ~C6
TOOLNAME a • U

IX

5. U ,C1 GD Cb z ~~.

AdaQuest 7 - -• 7 - -• 7
LDRATOstbe T T T TT• •• ••

S-TCAT --------- 7 T•T -

TCAT -Z ra

TLstGen TT" T TTbTe"
I. Used in conjuncton with TCAT, TCAT-PATh, or S-TCAT to animate coverage results.

8.2.3 Functional Coverage Analysis

Functional coverage, which may also be called requirements coverage, provides a mea-

sure of the extent to which tests have caused execution of the functions that the software is

required to perform. Unlike structural tests, functional tests can determine problems such

as the absence of needed code.

Two of the examined tools assess the functional coverage of tests. SoftTest provides a

measure of test adequacy in terms of the number of tested functional variations with respect

to the number of those testable. T provides a measure of test adequacy based on require-

ments coverage using user specified pass/fail results. An additional test comprehensiveness

measure considers requirements coverage, input domain coverage, output range coverage

and, optionally, structural coverage, where each factor can be user-weighted.

8-4

PART I Dynamic Analysis

8.3 Profiling

Profiling provides a trace of the flow of control during software execution. This infor-

mation can aid in locating the cause of a failure and the position of the associated defect.

Of the examined tools, both LDRA Testbed and TST provides this capability as an optional

feature. In the case of LDRA Testbed, however, the Testbed may override the user request

if the resulting display exceeds a preset limit.

In general, the majority of computing time is incurred by only a few program segments.

This may be because these segments are called frequently, are computationally intensive,

or both. When a program needs to be optimized, therefore, it is more efficient to start by

identifying where the majority of computing time is spent so that the optimization effort

can be appropriately focused. Information on the number of times particular program seg-

ments are executed can aid this determination. The coverage analysis tools all give the

number of times examined program elements are executed, some additionally identify the

number of times each program unit is invoked.

8.4 Timing Analysis

Timing analysis serves several purposes. These range from supporting the validation of

software requirements that impose specific timing constraints on software functions to

identifying particular program units that consume a significant proportion of computing

time.

AdaQuest and TCMON provide timing analysis. Both offer the flexibility of user-spec-

ified placement of timers, and measurement using either clock or wall time. TCMON ad-

ditionally allows a user to request automatic timer instrumentation at the program unit

level. This tool reports on the placement of timers (and any counters used for structural cov-

erage analysis) to provide information that can be used to estimate the influence of instru-

mentation statements on measured time.

8.5 Test Bed Generation

Unit and integration testing require the ability to invoke the appropriate modules, pass-

ing necessary inputs and capturing the actual outputs so that they can be compared against

expected outputs. Integration testing may proceed in either a top-down or bottom-up man-

8-5

Dynamic Analysis PART I

ner. In the first case, testing starts with the most abstract, or high-level modules and requires

the use of stubs to represent those modules called by the module under test. In bottom-up

testing, the most detailed, or lower-level, modules are tested first. Here test drivers are re- 0

quired to simulate the modules that invoke the modules under test. Development of such

test drivers and stubs can be complex and greatly facilitated by automated support. In ad-

dition to eliminating the need for much manual labor, automatic generation also promotes

a standardized testing environment. 0

LDRA Testbed, TCMON, and TestGen all generate the test drivers needed for execu-

tion of an instrumented program. These are, however, very limited drivers primarily intend-

ed to handle the trace files used to collect coverage details. Of the examined tools, TBGEN

and TST are the only ones that provide true test bed generation, and only TBGEN supports

stub generation. Table 8-3 summarizes the test bed generation characteristics •" these two

tools.

Table 8-3. Test Bed Generation Characteristics

Command Record Keeping
Language

TOOLNAME -

TBGEN _qq-

TST T - T-

8.6 Test Data Generation Support

Dynamic analysis requires software to be executed with a set of test data. The resulting

outputs are then captured and compared with the outputs expected for the given input data.

The traditionally manual and labor-intensive method of preparing test data has typically

limited the extent of testing that is performed. Although the available tools do not totally

replace the human effort required, they can make a substantial reduction to the amount of

human labor needed.

8-6

PART I Dynamic Analysis

As mentioned above, dynamic analysis requires comparing expected results against ac-

tual results to determine the success or failure of a test. Determining expected results is an-

other traditionally manual and difficult task. Research into tools, called oracles, to

automate this task has been ongoing for many years. As yet, however, symbolic evaluators

(see Section 7.9) come the closest to supporting this capability.

8.6.1 Structural Test Data Generation

During testing, there are occasions where it is necessary to determine the test data that

will cause a specific branch or path to be executed. This occurs, for example, when it is nec-

essary to attain a specified level of structural coverage and existing test data has not exe-

cuted some structural elements.

Support for this activity is available at two levels. AdaQuest and TCAT explicitly iden-

tify the program segments that comprise particular program branches and paths. LDRA

Testbed, Logiscope, TCAT-PATH, and TestGen provide the same information and, addi-

tionally, explicitly identify the conditions required to cause each structural element to be

executed.

8.6.2 Functional Test Data Generation

Functional tests can be derived from a requirements specifications using three catego-

ries of methods: (1) algorithmic techniques such as cause-effect graphing, equivalence

class partitioning, and boundary value analysis; (2) heuristic techniques including fault di-

rected testing and the traditional error guessing; and (3) random techniques that employ

random generation of test data.

T supports all these techniques. Additionally, it is capable of incremental test data gen-

eration, that is, tests can be generated for software changes only. T is the only examined

tool that produces test data values ready for immediate use in testing.

SoftTest supports cause-effect graphing to compile a database of input conditions for

each unique function. The user then works from these conditions to determine the necessary

test data. In those cases where identified functions are not directly testable, for example,

because results produced by one function may be obscured by other functions, SoftTest

identifies intermediate results that, if observable, would enable otherwise obscured func-

tions to be tested.

8-7

Dynamic Analysis PART I

8.6.3 Parameter Test Data Generation

Thorough test coverage at the integration level requires that each subprogram be exe-

cuted over a range of parameter values. Of the examined tools, only TST provides automat-

ed generation of test data for certain types of subprogram parameters. This generation

occurs in one of two forms. The user can specify that all possible values for a parameter be

generated (or first and last values for floating point numbers). Alternatively, the user can

request that these values are divided into a number of partitions and that the first, middle,

and last values from each partition be selected.

8.6.4 Grammar-based Test Data Generation

In those cases when the test data is simply structured, and this structure is amenable to

description, grammar-based test data generation allows rapid, automated generation of

large amounts of test data. This capability is particularly useful in random testing.

TDGen provides this functionality. Test data is generated according to location-specific

data, uniformly distributed data, or value-factored data. TDGen can generate data random-

ly, sequentially, or according to a user specification.

8.7 Test Data Analysis

Two types of test data analysis are considered here. In the first case, test data sets are

analyzed to identify which test data sets execute which lines of code. When particular lines

of code are changed, this information shows which test data sets are affected by the change

and must be rerun. The second type of test data analysis detects and reports on redundant

test data sets. This identifies test data sets that are essentially equivalent in effect and, there-

fore, can be eliminated to reduce testing cost without affecting test effectiveness. 0

LDRA Testbed is the only identified tool that supports these capabilities. The analyses

are performed on data collected during structural coverage analysis.

8.8 Dynamic Graph Generation

A visual representation of the execution flow of a program can aid in understanding that

program and diagnosing the cause of failures. LDRA Testbed and Logiscope provide this 0

8-8

PART I Dynamic Analysis

facility at both the unit and integration levels. TSCOPE uses the outputs of TCAT or

TCAT-PATH to animate the execution coverage on a directed graph; and the output of S-

TCAT can be used to animate coverage on a call tree representation of the program under

test.

8-9

PART I Findings

9. FINDINGS

This study examined a number of software testing tools to the extent necessary to gain

a feel for their capabilities. However, none of the tools was examined in great depth. Only

tools supporting test management, problem reporting, and static and dynamic analysis of

Ada code were considered. Categories of tools such as regression analyzers and emulators

were ignored. Additionally, some promising tools that may fill some of the identified func-

tional gaps are still awaiting examination.

9.1 Status of Available Tools

Reviews of testing practices and tool usage reveal extremely poor exploitation of avail-

able testing tool support. In the last ten years software developers have placed much focus

on software development tools and there has been an explosion in the availability of CASE

systems and other types of development environments. Only in the last few years, h' .-vever,

has much attention been paid to testing tools. These tools are now starting to come ray mar-

ket in increasing numbers. Even so, available evidence suggests that they are seldom used.

As the number of available testing tools has increased, some trends are emerging. Most

noticeably, there is an increased focus on test management and a movement towards cus-

tomer-oriented measures of software quality. On the technical side, there is a movement to-

wards graphical user interfaces using windows. There is, however, no evidence of

increased standardization in terms of testing functionality. Even within one category, no

single tool provides all desirable functionality, and different tools support different groups

of functions. These functional differences require a potential user to perform tool compar-

isons with caution and to select a tool very carefully.

The following findings relate to the potential for the use of testing tools in the develop-

ment and support of SDI software.

Test management. Test management tools offer critically needed support for test
planning and test progress monitoring. This category of test tool is perhaps the latest

* to come to market. The capabilities provided for capturing test plans, test procedures,
and test cases are generally similar. Capabilities for capturing software requirements,

tracing these to particular tests, and supporting change impact analysis, however, vary
significantly. With the exception of reliability analysis tools, which are becoming
more common, progress monitoring is seldom available and primitive. Similarly, only
one tool that supports cost reporting was identified and the analysis performed is also

9-1

Findings PART I

primitive. Nevertheless, the ability of these tools to manage a collection of test infor-
mation is very valuable and, even though its analysis could be improved, the data
available from this analysis is urgently needed to support the management and docu- •
mentation of test activities.

" Problem reporting. In addition to their primary use in tracking identified software
problems and managing problem resolution, problem reporting tools offer support for
test management. They provide information on the status and quality of software
products; in particular, they capture the data needed for software reliability modeling.
This data can also provide valuable insights into the status and quality of the software
development processes themselves, and so support continuous process improvement.

Problem reporting tools fall into two classes. The network-based class of tools are in-
tended for use on multiple, geographically dispersed projects. They offer specific
support for customer submission of problem reports and provide automatic notifica-
tion of changes in problem status. Those tools that provided problem reporting as one
part of test management capabilities run on a stand-alone personal computer but cap-
ture much of the same types of problem information and provide similar analyses of
problem data. There are several problem reporting tools that could be brought into im-
mediate use, although some thought should be given to defining a standardized set of
problem data to be captured across all SDI software development efforts.

"• Static analysis. Available static analysis tools are essentially limited to facilitating
program understanding and assessing characteristics of software quality. They pro-
vide some minimal support for guiding dynamic testing. Static analysis requires little
in the way of test environment set up and a minimum of human intervention. It can
detect the presence or absence of certain, limited types of defects and allows these
defects to be detected reliably and early in the testing process. The types of defects •
traditionally found by static analysis tools, however, are now routinely checked for
by Ada compilers. Currently, one of the main values of static analysis tools is in sup-
porting an understanding of software and guiding dynamic testing. Quality analysis
is a particular type of static analysis where assessment of a set of predefined quality
characteristics can be used to provide early indication of general software quality and
the identification of potential problem areas.3

In the types of tools examined, complexity analysis and control flow analysis are the
most common static analysis functions supported. A couple of examples of data flow
analysis tools have appeared and are expected to become more common in the future. S
Two types of tools to aid a user in understanding and documenting a piece of code are
available: graph generators and browsers. Flow graph and call graph generations are

3. The role of quality analysis is discussed extensively in the GPALS Software Quality Program Plan
[GPALS 1992a1.

9-2

PART I Findings

quite common, although they vary greatly in the quality of the representations used to

present these graphs. A few browsers are currently available and these are expected

to become more common over the next few years. This study and the CRWG's study
of quality analysis tools have, between them, identified several tools that check con-

formance of code with a set of project standards. One of these, ADAMAT, checks for

conformance with the SPC Ada style guidelines. Two new tools that also support the
SPC standards have recently been identified. More advanced types of static analysis,
such as symbolic evaluation, are uncommon.

Dynamic analysis. Although many needed dynamic analysis capabilities are infre-
quently available, tools are available that offer considerable support for dynamic test-
ing to increase confidence in correct software operation. Dynamic analysis is the
principle method used for software validation and verification. Here automated sup-
port for the preparation of a test bed, generation of test data, and analysis of test
results is needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human tester and increase software quality by
supporting such activities as test data adequacy assessment.

Structural coverage analyzers and profilers are the most common dynamic analysis
tools and are widely available on a range of operating platforms. The structural cov-
erage analyzers generally focus on statement and branch coverage, that is, relatively
low coverage measures. Support for path coverage analysis and structural coverage
at the integration level is less frequently available.

Support for other types of dynamic analysis is also infrequently available. Only two
of the examined tools provide timing analysis. Only two tools offer test driver gener-
ation for bottom-up testing, and only one of these also generates the stubs needed for
top-down testing. Few tools support test data generation for structural or random test-
ing, although two tools that support the generation of functional test data from a re-

quirements specification have been introduced. Assertion- testing is a relatively new
capability that is, as yet, only provided by one tool.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. In general, the examined tools require little sophistica-

tion on the part of the user and are supported by good documentation. Some actively guide

a user through necessary tasks, keep a record of test activities, and take extra steps to relieve

the user of repetitive tasks. In general, however, the tools employ primitive user interfaces

that could benefit from the application of human factors engineering. In several cases, the
need to refer to separate listings to identify objects referenced in reports complicated tool

use. There were instances where different tools gave different results when performing the

same function, for example, calculating cyclomatic complexity. Moreover, some of the

9-3

Findings PART I 0

tools contained faults. While most failures were trivial, others rendered a tool unusable un-

til fixed by the supplier. In three cases, major failures occurred when using the tool on sam-

ple software supplied by the supplier. Consequently, prospective tool users should carefully 0
consider a tool's usage history and the types of support options provided by the tool sup-

plier.

9.2 Significant Deficiencies

Available testing tools offer significant opportunities for increasing software quality
and reducing development and support costs. Even so, there are a number of problems with
these tools and a lack of needed functionality that may handicap SDI software testing. The
following problems are of particular concern.

"There is a lack of support for testing concurrent Ada software. The vast majority
of current testing techniques are intended for testing sequential code. Concurrent soft-
ware, however, introduces special concerns. The inherent indeterminism of concur-
rent programs means that two executions of the same software with the same inputs
can produce different behaviors. This lack of reproducibility handicaps, for example,
determining the cause of a failure and retesting a modified program. Concurrent pro-
grams can also contain a new class of faults, called synchronization faults. Additional 0
tests are needed to check for existence of these faults. Testing techniques addressing
these issues are appearing, along with some prototype tools, such as AdaTDC being
sponsored by the National Science Foundation. One commercial tool that is expected
to support concurrent re-execution within the next year is PARTAMOS, under devel-
opment by Alcatel Austria. Meanwhile, the majority of the commercial Ada-based
static and dynamic analyzers are capable of recognizing all the concurrent Ada lan-
guage features, but not fully acting on them.

" There is a need for increased tool integration to provide more complete coverage
of testing activities. The majority of tools provide support for a specific, limited set
of testing activities. No single tool, or supplier toolset, provides all desirable function-
ality. While tools that support different types of activities can generally be used
together, simply applying them independently in sequence is usually not the most
cost-effective approach. It can incur unnecessary duplication of both human and com-
puter work and may require additional steps to make the output of one tool acceptable
to another. It also requires users to gain familiarity with a number of different user
interfaces, as well as requiring system administrators to support a number of indepen-
dent tools. Moreover, truepfunctional integration requires some common, underlying
model of the software development process model. For example, a test log automati-

9-4

el

PART I Findings

cally captured by a test bed during test execution activities should be the same log that

a test management tools uses in monitoring test progress. This type of integration

would greatly increase the power of available tools and their ease of use.

There is a need for integration of testing tools into CASE systems to provide

improved feedback into development activities. While some CASE systems do

provide support for code level testing, this support is generally less extensive than that

provided by stand-alone testing tools. At the same time, CASE tools are providing

more support for testing activities during early development phases than stand-alone

tools. A more careful look at the testing capabilities of current CASE systems is

needed, together with an evaluation as to which, and how, independent tools should

be integrated with them to provide a comprehensive test environment. Here again,

functional integration into a CASE requires that test processes and products are them-

selves integrated into the underlying software development process model. These

issues have yet to be addressed.

There is a lack of data on the cost effectiveness of particular test techniques and tools

that can be used to encourage and guide their use. Although there have been many studies

into the comparative value of certain test techniques, there is a lack of data on the practical

costs and benefits of particular testing techniques, and the tools that support those tech-

niques. This information is needed to determine, for a given set of circumstances, the most

appropriate techniques and tools to apply, the order in which to apply them, and the extent

of that use. It is also needed during planning activities, to support the estimation of needed

testing resources, and in monitoring test progress. The data captured in test logs and prob-

lem reports can be used for this purpose, imposing a minimal data collection burden on soft-

ware developers. Where this data is maintained automatically, it will be a simple task to

forward it to a central site for analysis, such as the Level 2 System Simulator (L2SS) soft-

ware metrics database.

A number of promising testing techniques have been proposed in the last decade that

have failed to progress beyond prototype status. One example of this is the software fault

tree analysis used for error cause and effect analysis in support of risk management. The

Anna toolset is an example of a suite of prototype tools for assertion-based testing of Ada

code. Further development of such techniques and supporting tools could start to fill some

of the gaps in needed testing capabilities.

Additionally, there are needed automated test capabilities that are provided for other

languages but not available for Ada. Examples of capabilities available for other languages

include error seeding as another measure of test data adequacy; support for test coverage

9.5

Findings PART I

analysis of kernel, daemon, and library code in addition to application code; and critical
path analysis. Similarly, while several tools supporting data flow testing of C code are

available, only one tool supplier with plans to provide data flow testing of Ada code has 0
been identified. Here again, further tool development could start to fill some of the gaps in
needed testing capabilities.

9-6

PART II

TOOL EXAMINATION REPORTS

0 PART II Introduction

10. INTRODUCTION

* This part of the report describes the selected tools in terms of their usage. Tools are

grouped by supplier and the report details the operating environment and the functionality

provided. Where applicable, price information, accurate at the time of examination, is also

included. Each description is supported with observations on ease of use, documentation

* and user support, and Ada restrictions. Problems encountered during the examinations pro-

vided insight into the reliability and robustness of each tool. Each description is accompa-

nied by sample outputs.

Table 10-1 summarizes the details given for each tool. It also identifies available bridg-

es between testing tools and CASE systems. Table 10-2 presents relevant supplier data.

00-

Introduction PART 11

Cn
E 4

U
F11 savppq jaqlo/gSV,- W4

W) " En -'40 C*

ULL. 4
u0

, -i 0 0

F- Cy ICO) xmý

w 0
o -n u

u ~ 4 inUIr

Xsuopox m) 4

0.

=z C
0 a)

0 1 U, 1 00 04) I

IV vjqu s~aqduj!9 U.

p ~UOISJOAIIJOM)S__ _ N_
_

.0 1 P""OdflS SA&OPUM 0 lu- lu. lo V.- a. 0 1

AU ~~SOG

osawq-v----

SJ~A ____ _____

amf

* Jwi!o

AUPSI.O V__AAAV

F- AV AVA

z4 I0 -
vh

Uj g

10-2

PART 11 Introduction

=)=)* * 0:

Ll. .S.LL

o 00 U
osa~pliag jaqlo/3SV3 - S

U~~~ U w 2'

C~ Cr

0W .>~ __ ao L__
U U 0

W to E;000 E--U
amelpa"Ju Jo .mImt I UUXj 1

ssrnzod ijodx

4.q~qvdzj s3lqu __

UOISJOA IIJOAOON

ac-U p3odSMOPUMA 0 0000-. 00 0 :
96 soa E---

A sol.1 1

SSUq3eWj

40% r4 C4 eA

AAA A A>

oOSO oOMX n rn C4 U4-

z

10-3

introduction PART 11

S!.s(juuv UOIssahi I.__ __

-L. -L

ftqupjod.U u.qoMa LL.. _

A. uawaftUBN 3SJL L. ___

0R - < s

LI U)U
LU <

I____ Iwo a CyO Cwy 00 W. a0I< <<

0

U 'w ; U
0. ~ C0Y

o~~~C OdSIS~ U. .

dnoJ9Jjasfl ____ -71i.

- ~~ S3UUIJOUJJ~ VO_____

age SUMOId VDJ ___

* --

Apaqsujqems3 00 00 0% 00 0 00 Q 0% r- ,O0

Z' 00 , 0 0

*2i.S jaddflS C4 - -

A v A__ ____

CA a.00
00 * -.

U ~ ~ ~ ~ i 40%,~-0%0 0'

I+F

UC

SO CC
C U~CC

<~ ~ CU O

P.2
rrfr

-- Ul

CAg a <0
____ ____ ___ 00000U~~ U

C6 W. -m-

10-4

PART II AdaQuest

11. AdaQuest

The AdaQuest toolset provides a variety of static and dynamic techniques for testing
Ada software. It is based on two earlier verification and validation systems, RXVP80 and
J7AVS, that, respectively, support Fortran and Jovial testing.

The static analysis capabilities of the current version of AdaQuest are limited to iden-
tifying program branches and the lexical nesting structure of specified compilation units.
Existing dynamic capabilities consist of coverage and timing analysis.

U.1 Tool Overview

AdaQuest was developed by General Research Corporation. The first version of this
toolset, version 1.1, became available in December 1991. It runs on VAX/VMS platforms.
At the time of evaluation, the price for AdaQuest started at $6,500.

AdaQuest requires that code to be analyzed resides in an AdaQuest program library.
Each library is associated with a VMS directory that contains the intermediate files of the
relevant compilation units. Several library management commands are provided. These in-
clude commands to set a current library and build a working set of compilation units. Spe-
cial facilities are provided for reading source files into a library; in the current version of
the toolset, source fides are limited to containing a single compilation unit.

The AdaQuest Analyzer generates branch reports and unit nesting reports for user-spec-
ified library units. In the first case, the result is an annotated source code listing that iden-
tifies and numbers each decision branch in each program unit of a specified compilation
unit. This report is needed to select locations for the insertion of coverage and timing probes
(see below). It is also required for interpretation of branch coverage reports. The unit nest-
ing report shows the lexical nesting of the program units in a compilation unit.

Each program unit can be instrumented to collect either coverage data, timing data, or
both. The user specifies the library unit bodies and subunits to be instrumented, and each
instrumented unit is written to a separate file. Instrumentation is performed by inserting
special statements into the source code. Where necessary, individual source code state-
ments are first transformed so that these insertions will be syntactically legal. An exit state-
ment, for example, may be replaced with if and goto statements.

11-1

AdaQuest PART II

Two different types of probes are available to collect coverage data. Branch coverage

probes are inserted automatically at each branch point (including at the start of each accept

and block statement). Any code transformations necessary to ensure correct coverage mea-

surement are also made automatically. The second type of probe, called test case probes,

are used to partition the data collected from an instrumented program. They allow, for ex-

ample, measuring the coverage achieved in each execution of a loop. Test case probes are

inserted at user-specified points in the source code and take the form of procedure call state-

ments. It is the user's responsibility to ensure that these are placed in a syntactically legal

fashion; AdaQuest does not check the placement. The resulting instrumented files include

file header information that identifies the unit, original source file, and type of instrumen-

tation performed. They are accompanied by files containing two additional AdaQuest-gen-

crated units needed for the collection of coverage data.

For timing analysis, probes are also inserted at user-specified locations. In each case,

the user gives a start and stop location in the form of source code line numbers; these loca-

tions may reside in different program units within a compilation unit. Again, it is the user's

responsibility to ensure that insertions at these defined locations will be syntactically legal.

The user also specifies whether data should be measured in terms of CPU or wall clock

time.

Compilation and linking of the instrumented program is performed using the standard

VAX facilities. AdaQuest does, however, provide a compilation script that can be used to

compile the two AdaQuest-generated run-time units. When executed, the instrumented pro-

gram collects coverage and timing data in an automatically created trace file. (As with the

other tools that write coverage details to a trace file, a program run must terminate normally

so that the trace file is closed by the operating system.) If desired, the user can allocate a

name and description to the trace file.

AdaQuest maintains a test history for each body or subunit in a library in order to allow

reporting on the cumulative coverage achieved over a series of test runs. Initially empty,

the user specifies when a trace file should be appended to the appropriate histories. Nor-

mally, the test history for a unit is cleared when the program library is updated. In certain

circumstances, the user can override this function to keep a history, although this ability

must be used with great care.

The reports that are available can be produced for all or only user-specified program

units. The Test Run Report identifies the original source code file(s) and indicates how it

was instrumented. Coverage reports are generated using data from a single trace file, called

11-2

PART If AdaQuest

the current test run, and, in most cases, user-specified test histories. Between them, the cov-

erage reports provide counts of the number of times each program unit, accept statement,

and block statement was executed, counts of the number of times each conditional branch

was executed, the execution status (first-time hit, never hit) of each branch, and the percent-

age coverage of the branches in each unit. In some cases, histograms are provided to com-

pare the execution counts of different items. Two additional reports can be generated using

coverage information from the test history files alone. Timing analysis reports are generat-

ed from a single trace file. They detail the timing probe placement, the number of times

each selected code segment was invoked, and the minimum, maximum, and average time

taken for each segment. Timing data is not accumulated in test histories.

11.2 Observations

Ease of use. The user interacts with AdaQuest through a command interface. This in-

terface requires considerable memorization on the user's part (the Analyzer, for example,
has some 27 different commands) and exhibits some inconsistencies. Although the ability

to explicitly specify the locations for coverage and timing probes can be valuable, the need

to manually refer to the annotated source code listing is tedious and a possible source of

error. This inconvenience could be reduced by providing, for example, some automatic in-

sertion of timing probes to measure the time spent in named units. Output listings are han-

dled in an unusual manner; all commands that produce an output listing automatically

invoke the VAX edlin editor.

At the time of evaluation, the on-line help provided summary information on only a

small number of available commands, although this should be a useful feature when com-

pleted.

Documentation and user support. A complete AdaQuest user manual was not avail-

able at the time of examination. The documentation that was provided, however, was well-
written and easy to follow. One nice feature is a command dictionary that provides a useful

reference manual. Tool installation was straightforward.

Instrumentation overhead. AdaQuest allows the user to control the extent of instru-

mentation by requiring the user to explicitly identify the units to be instrumented. Two spe-

cial run-time units are provided that must be included in an instrumented executable to

handle the creation and recording of a trace file. Including these special units, full instru-

11-3

AdaQuest PART II

mentation for branch coverage of the Ada Lexical Analyzer Generator gave an approxi-

mately 19% increase in the total source code size.

Ada restrictions. AdaQuest supports the full Ada language, including extensions de-

scribed in Chapter 13 of the Ada Language Reference Manual. The only exception is the

Ada terminate alternative (see LRM 9.7. 1) which contains no statements and cannot be in-

strumented.

Problems encountered. No problems were encountered during the examinations of

this tool. AdaQuest operated exactly as described in the documentation provided.

U.3 Planned Additions

Future versions of the static analyzer are expected to generate dependency reports and

check for logic errors (such as infinite loops, unreachable statements, and uninitialized

variables). Conformance checking against standards relating to the use of forbidden con-

structs and those specifying maximum/minimum constraints on the quantity of Ada con-

structs appearing within a certain scope is also anticipated. A source code profiler will list

any non-zero counts for some 228 Ada features. AdaQuest is also expected to include a

query facility that provides direct access to this data for quality analysis tools.

Additional dynamic analysis capabilities expected to become available include the use

of assertions for checking unit- and interface-level design constraints. Finally, a task ana-

lyzer is also planned that traces the actual synchronization relationships between Ada tasks,

creating timing diagrams to help in diagnosing synchronization errors such as deadlock and

starvation.

11.4 Sample Outputs

Figures 11-1 through 11-12 provide sample outputs from AdaQuest.

11-4

PART 11 AdaQuest

27-JAN-1992 10:45 ADAQUEST UNIT NESTING REPORT PAGE 1
Library: ADALEK:WORE Ccap Unit: LLC0O4PILE:BODY

27-JAN-1992 10:35:12
Structure Unit Unit Kind Starting Line

LitCOMPILE Procedure body 26
*LLNEXTTOKEN Procedure Spec 136

* LLFIND Function Body 140
.. LLPRTSTRING Procedure Body 165
.. LLPRTTOKEH Procedure Body 177
*..LLSKXP!OKEN ftocedure Body 190
*..LLSKIPNODE Procedure Body 203
. LLSKXPBOTN Procedure Body 217
.. LLFATAL Procedure Body 234
* . GETQIARACTER Procedure Body 246
.. NUBKETOKEN Function Body 264
... CVT STRING Function Body 271
. . LL_.TOKDNS Package Spec 326
.... ADVANCE Procedure Spec 328
*..latTOKENS Package Stub 334
*..LLNZXTflOKEN Procedure Body 337
*..LL!AKEACTION Procedure Stub 349
. . 16LlZ4ik Procedure Body 352
... EAJDGRAM Procedure body 383

....BUILDRIGET Procedure Body 389

....BUIDSELECT Procedure body 449
. ... PAR'SE Procedure body 499

.E. RASE Procedure Body 505

....TES!SYNCN Procedure Spec 522

....EXPANID Procedure Body 525
.MATCH runction Body 533

.-T'E"S!SYNCH Procedure body 593
.... I NC.blu ON!ZE Procedure body 596

27-JAN-1992 10:45 ADAQUEST UNIT NSTING REPORT PAGE 2
Library: ADALEX:IIORK Comp Unit: LLCOMPIIE. LLtTOXZNS

27-JAN-1992 10:39:35
Structure Unit Unit Kind Starting Line

LL_TOmmlS Package Body 25

-ADVANCE Procedure Body 49
.. GET-CHAR Procedure Body 56
... CHAR.ADVANCE Procedure Body 69
... LOOKMREAD Procedure Body 66

Figure 11-1. Ada~uet Unit Nesting Report

AdaQuest PART II

----- ----- ----- ----- --m-- ---- m--m -------
27-JAN-1992 10:45 ADAQUEST BRANCH REPORT PAGE I
Library: ADALEX;WORK Coup Unit: LLCOMPILE:BODY

27-JAN-1992 10135s12
.....l----. ------- m.fl ----------------- m ----------

140 function LLFIND(ITD4: LLSTRINGS; WHICH: LLSTYLE) return INTEGER in
141 -- Find item in symbol table - return index or 0 if not found.
142 -- Assum"e symbol table is sorted in ascending order.
143 LOW, MIDPOINT, HIGH. INTEGER,
144 begin

***** BRANCH 1 PROGRAM UNIT START
145 LOW - 1;
146 HIGH - LLTABLZSIZE + 1i
147 while LOW /- HIGH loop

'** BRANCH 2 LOOP TEST FAIL
0*tW* BRANCH 3 LOOP TEST PASS

148 MIDPOINT :- (HIGH + LOW) / 2;

149 if ITEM (LLSYMBOLTABLE(MIDPOINT) .KEY then
***5* BRANCH 4 IF TEST PASS

150 HIGH s- MIDPOINTi
151 elsif ITEM - LLSYMBOLTABLE(MIDPOINT). KEY then

"*ettt BRANCH 5 ELSIF TEST PASS
152 if LLSTMhOLTABLE(MIDPOINT) .KIND - WHICH then

"5"t* BRANCH 6 IF TEST PASS

726 begin -- LLCOMPILE
*t**t BRANCH 142 PROGRAM UNIT START

727 CREATE (STANDARD ERROR, OUTFILE, "stdAe-rror, "0);
728 LLMAI!N
730 CLOSE (STANDARD ERROR);
731 end LLCOMPILEZ

BRANCH SUMMARY
Branch Kind Branch ID Begin End Branch Statement Path

PROGRAM UNIT START 1 , 145 147 145 146 147
LOOP TEST FAIL 2 147 161 147 161
LOOP TEST PASS 3 147 149 147 148 149
IF TEST PASS 4 149 147 149 150 147
ELSIF TEST PASS 5 149 152 149 152
IF TEST PASS 6 152 153 152 153

PROGRAM UNIT START 142 727 730 727 728 730

Unreachable Statment NONE - Branch contains an Infinite Loop

Figure 11-2. AdaQuest Branch Report

11-6

PART II AdaQuest

- - ----------- ------- - ------------- ;-- ---27-JAN-1992 12:13 ADAOUEST TEST RUN REPORT PAGE I

• Trace File : USRi(ADATEST]ADAQUEST.TF; 16
Time of Run a 27-JAM-1992 12:08:39
Name EXAMPLE 1
Description Run with 1st test file
of Test Cases 1

Test Run Units

LLCOMPILEZ BODY
Instrumented From File

USR: (ADATEST. ADALEX2] LL COMPILE. ADA; 10
Instrumentation Parameters

Coverage

SLLSUPPORT: BODY

Instrumented Fram File a

USR:(ADATEST. ADALE=] LLSUP_BODY.ADA; 1
Instrumentation Parameters

Coverage

Figure 11-3. AdaQuest Coverage Test Run Report

11-7

AdaQuest PART 11

a ~ ~ - - - - - - - - - - ---a...........................

I a

a..i I

I I

I of0

I I I 's I , - - - - - - -
it It

It:

if ElSla.

11 tst I t2 II I

I~ VAt

I It

ao4` l to to i

:1 I 3

SI q ma IN ftR Nft

as ma ItoI c of.o t

off 0- 0lf rW

I m ~:1 1 1 a-8 f

PART II AdaQuest

I I SI gi ll
0 n

Ol ---- ---

- - -- cc-
114O I. n m I I I ,,,.I
]1: II I

0 I0 III I C

XI II II I
IlI I II

" o :1 I

I I .I I J""-- 11 1
Z " I N :

11. 0 ItI I I

I .flp I lm I ' I ,II l I - I

IItI I a

,- o-::

A I 6 1

o,, H : I!

I 0 1 1 1Z

+ -3 I w --- I of
II

I i i

*0 111 1 1 1 a

J iI +- I :"'+ .5,•• . +
S i 1." I

11-

I.J~ ~~ ~~~~ 0 I S S .10I I I -*

1.9 I I II I I I I *o a

SIX~~~ IA .f - : *

1W 0- a* 0. S01 EI -. 1 1. a

WON I-rUI
!c ItV t .

-241 .. aaS aoI, IIi -i 1~ --i -- - -- I No 6.0 1
Sit . 1jc.

In 1Aa, it 1: 1`: 01I 1 W ,N-

___ K:'11 9

AdaQuest PART 11

I U 14NJ.- 0 -o C~O.I If) .1 00

~It ItH
is us g~I~s . ~ £017

- -n "I

Is)IO

I I t o

SI IS U I 5 55 II
IS D4IS3 ~If).ff).~I.-) 53 1f NN

Iril .- WS I .) - 4

S1 v .0 INS IN Ia

Is In~. I

I I' S 1S

It ~~ I 1-

in Iso Ir.

--------------- --- ---
I, I " m ee~~~ I 0

NO I

' i A: : : 0
I 0 1i 1 41'

N,, 0. -- ga 0-16U, I N
-~ SI I I

C SI **I1I 10

PART 11 AdaQuest

~~~5~ ISg 'II 45 ;,4 5b I *. O5 ~ I .i1. OC50

16L b2 00 E**. Ow.(M i *~ .

-* 5Is a--5 * .10 -- ** 9 5

15541 M DS a 9 *5%
M 3 11 1 1. 1s- 1 15 u9

* ~5 ss 5 s *. *5 *

44.-SE53 II 04J.5 *I~ ..S..0~ ~MeI9 35

*6 a Iza ;
- 11 95 : t 1 ' C ''

Id Il. 5 55 . a
C; .5

I~~~ C, 0109 9309 9

all: of!~
11:13M

I. *5 inI4 H i

Is II

so I N" r .4

ft * a e0, 1 It In f
InI

* 1. It.
41 1. V 1 8.

c II

A~*~ **9. Sb 1 ... 01I

I0 0 4
10 ItV #9 I 3.5I 1

Z11

AdaQuest PART II 1

I aI , SI ,* , .,,* 0a as

I I f ill a a a

a, 1

IN I a:
aI , , a , , .

at a I , , Iam i a i S a I~

I aI

II 1 9 Dv Il I I a I I

0I, % ,

l. : If j I I "" a

Di I U5 a

S It 1

of.

I 44 :a a I

I I i I I a a. La
I I 1 I I OD
IS aS I o hI

il : i t : 1
H,,, I , m w ae

.4 I a I S I l I I r- r e . S

C; 9: C; C;C ili w C a o ;CC d

Iw I I I

I, I- AI -- .
IH 111 j

I a

it

, C a I I, , :

I I a I- - -

SI I i 30 l ~I S I

a S I tO tg I I II
II I I C, I *e n in i i a •a a

-- " I I . : , a

I - II ' S

Is oIzI I " " 11-1 2

'H i' '°
I~'i 0

I :I5 Iaa ~I I ma .

11-1

Ii I I•0

PART II AdaQuest

a •.. a.zm b.I
*.I 4 1 r2 i3 Z "

• ' fI f' S,, ,. P' 0 .0= i I I

n0.4 I10, ~10 000 . . t''

m I k I - - I I.. 21 .,.-l a a 1 01

I All
a aI I 011

Ia a' I "Ja. ' U,,."- .°" !a .3 .Ji ,
I I

a•sa * °' '

- - - -- - -

a a;Co _ _ _

dc au 'I
D

l0 1 a a a 1i

low

- - - - --1- a-- - - 4

Ii It 14 ZLL

-- Ia a----------------------------- ---------------------

a~~2 "aa0
a Al 0o o 1O-O ~

Iu
ap1o08W a aOO4~~w

I eamoo6 a C00O6

II :10~1: ---0----a-- I

1.~ --- in

I4 1 `2 n6~~.wm~la~.~

ula~a a a ~ aa @6d -d11-13

AdaQuest PART II

* a. .* I I .'
I I i IMI MS

Ur IC 4 I i ou, IV a 1.Cd

*0 .te .m C,. I0e.

C Ci . .,e i , 9
'' ha m ma: I a a r=l

* SII ISinIII .-. SI(

4 Vol one e e
II I . I ISC e et

I ., ,

I1 1. i i:Il• -

Nt e I I - e a %p
1m e ... S Sn, I .. , ,

s I IsM

-- -- - - - - -- - - 1 ',' ,Os eo m Pe 0 1 00 000a tI m 1. 0 C 1o mt

I,1,, - 0 1 •

I ; I
or I E6

- C leg - mm

,s -- I, -----...--- e!
l* I C I

i aa.m I
I e

,I ,,; ; . . . ,~ ,
I. ~i

ft u I I ga'
I1-14

II ;-I I--------------- ! !.5, , a . a
I III C

, . u , m e m . m
CU gge P~ C i SI rI

I I C S I
I IC

C ma m eein-0# I 3 ,C e mu In , , . ,ti0

I . -- i -..

Ca., ma., e : I ' '"-i' I i ', ,
a .m: I e e....

S, II . C I', C , 9

CCC ii C i
Imae Cl *am e.I.m

*g ee CCI CS ' ,

I i I *l .1

,,,, . ,o:...,s. :C5 , .. ~ El' "

j • I I. , .CB , .Int ll I " I*Ii~i. ,,.1iI,• I:::• al~ i Ei m..•I U• 5I I 1 I I mom a I

PART II AdaQuest

08-MAR-1992 12:01 ADAQUEST TEST RUN REPORT PAGE I

Trace File : USR: (ADATESTISUNRUN4.ETF;l
Time of Run : 0--M1R992 11:35s06

Name TIMING RUN 1
Description Sample runfor timing data using test file 1
of Test Cases 1

Test Run Units

Lý_C OMPLZ: BODY
Instrumented From File

USi: (ADATESTI LLCOHWILE.ADA; 1
Instrumentation Parameters

Timing - CPU
Timing Intervals (Start/Stop Source Line Numbers)

394 - 446
453 - 459
463 - 496
653 - 663
667 - 717

721 - 723
737 - 730

LSUPP`OTt BODY
Instrumented From file

USR: (ADATRST. hDUEX2] LSUPDOD!.ADA; 1
Instrumentation Parameters

Timing - CPU
Timing Intervals (Start/Stop Source Line Nuubers)

220 - 2S3
291 - 351
365 - 460
465 - 501
503 - 546

Figure 11-11. AdaQuest Interval Test Run Report

11-15

AdaQuest PART II

08-MAR-1992 12:02 ADAQUEST INTERVAL TIMING REPORT PAGE 1

Start / Stop Number of Minimu Time Maximum Tine Average Time

Interval Line Number Executions hh:=m:ss.cc hh:=m:as.cc hh:=:ss.cc
--------------------- - --------------

- - - TEST RUN INFORMATION - - -

Trace File a USR:(ADATESTJSUNRUN4.ETF;1
Tine of Run a 08-MAR-1992 11:35:06
Name TIMING_.RUN_
Deacription Sample run for timing data using test file 1

Test Cases 1

- - - REPORT QUALIFIERS - - -

By Test Case a No

08-NAR-1992 12:02 ADAQUEST ZNTERVAL TIMING REPORT PAGE 2

Start / Stop Number of Minimum Time MNxtm-- Time Average Time
Interval Line Number Executions hh:muss. o hh:m=:s.co hh: mm, s.oc

CPU TIMING FOR COMP UNIT • alCO-PILE t BODY,

1 394 / 446 64 00100100.00 00:00:00.01 00:00:00.00
2 453 / 459 64 00:00:00.00 00:00:00.01 00,00:00.00

3 463 / 496 1 0000,00.34 0:00:00.34 00:00:00.34
5 667 / 717 1 00,00:00.43 00:00:00.43 00:00:00.43

6 721 / 723 1 00:00:00.76 00:00:00.76 00:00:00.71
7 727 / 730 1 00t00:00.62 00:00:00.82 00:00:00.82

CPU TIMING FOR COMP UNIT LL_SUPPORT i BODY

4 465 / 501 4 00:00:00.01 00:00:00.01 00:00100.01
5 508 / 546 3 00:00:00.00 00:00:00.00 00:00:00.00

FIgure 11-12. AdaQuest Interval Timing Report

11-16

PART II AutoFlow-Ada

12. AutoFlow-Ada

AutoFlow-Ada generates flowcharts from Ada source code. These flowcharts can be

used to help understand an Ada program and to document it. Versions of AutoFlow that op-

erate on C, Cobol, Fortran, and Pascal code are also available. In addition to flowcharts,

these other versions generate structure charts and can interface with the KnowledgeWare/

ADW and the Texas Instruments IEW CASE systems via an import file. The C version also

includes the capability to instrument source code to report on test coverage at the branch

level; results can then be automatically annotated on flow charts.

12.1 Tool Overview

AutoFlow was developed by AutoCASE Technology. The AutoFlow family as a whole

has over 3,000 users. The first Ada version of this product was released early in 1992 and

has over 10 users. It runs on IBM PC machines under DOS (version 3.0 or higher) and OS/

2. The evaluation was performed on version 1.02 of AutoFlow-Ada. At the time of evalu-

ation, the price for AutoFlow was $9,950.

AutoFlow-Ada generates self-explanatory block-structured flowcharts using a flow-

chart layout copyrighted by AutoCASE Technology. It is intended for use on programs

with correct Ada syntax, that is, compilable programs. Compiler directives are treated as

comments and not expanded. Consequently, in some circumstances, it may be nec-ssary to

use the fully expanded preprocessed listing file provided by many Ada compilers as input

to AutoFlow-Ada. The tool can be used in interactive or batch mode. In interactive mode it

allows the user to both create and browse flowcharts, selectively saving or printing chosen

charts. In batch mode, all produced flowcharts are automatically saved to disk.

Usually one flowchart is generated for each Ada procedure. Some of these flowcharts

may be very large and various options are provided for dealing with flowcharts that cannot

fit on a single page. The best of these is a block-structured page-break algorithm that uses

a top-down refinement approach to break a large flowchart into subcharts that can be pre-

sented on separate pages. Additional flexibility is provided by allowing the user to specify

the size of page used. Another option is to limit the size of the box in which flowcharts are

presented. In this case, flowchart elements that do not fit into the specified box are repre-

sented by a string of dots. Alternatively, the user can request that a flowchart saved to disk

is divided into strips that can be manually combined to make a large chart.

12-1

AutoFlow-Ada PART II

12.2 Observations

Ease of use. The installation and operation of AutoFlow-Ada is straightforward. The

tool is fast: the documentation cites an example of generating flowcharts for an Ada pro-

gram in excess of ten thousand lines of code, where the average time to generate each flow-

chart page was less than 0.5 seconds.

AutoFlow-Ada includes a number of special options and utilities that facilitate its use.

The utility mkdoall, for example, generates command files that will invoke AutoFlow-Ada

on multiple source files. Utilities and functions that support its use with non-IBM compat-

ible printers are also provided. Additionally, a file format conversion utility is available to

convert ASCII file into PostScript, HPGL, and PIC formats that can be sent to special out-

put devices, or used with desktop publishing software, to prepare high quality documenta-

tion.

Documentation and user support. The documentation is sufficient for tool use. Au-

toCASE Technology provided good support and was helpful and prompt in addressing en-

countered problems.

Ada restrictions. AutoFlow-Ada supports full Ada, the only restrictions being that

each procedure or function is limited to 2,048 basic blocks and that input source lines are

limited to 127 characters.

Problems encountered. AutoFlow-Ada ran on the sample Ada Lexical Analyzer Gen-

erator source code. Various problems were encountered if the size of generated flowcharts
was not constrained or when some particular page sizes were specified. These problems in-

cluded the process hanging and incorrect referencing between subcharts. AutoCASE cor-

rected the underlying problems and provided a new copy of the tool.

12.3 Planned Additions

Version 2 of AutoFlow-Ada is scheduled for release in the fourth quarter of 1992. It will

include the generation of structure charts and a graphical user interface. This version will

also be available on major Unix platforms.

12-2

PART II AutoFlow-Ada

12.4 Sample Outputs

Figures 12-1 through 12-6 provide sample outputs from AutoFlow-Ada.

12-3

AutoFlow-Ada PART 11

z
ww

00

a.

U.

- 0

H ii.

12 N 4

PART 11 AutoFlow-Ada

z

0

.C

U.

00
C4

.4'.

121 0

AutoFi ow-Ada PART 11

I.-DI -I

OC

.2
C0

iiL
IL.

I- L.

0.

-4 0

- 10

00

12-6~

0.0

PART 11 AutoFlow-Ada

z
w

I LU

c
Ic

CIO
1 2o

12-7

AutoFlow-Ada PART II 1

0 0

Ii06
AlI

I '' A

IB -"

Z

* 0

!i -i

i I "

12-8

PART 11 AutoFi ow-Ada

-LU

- z
LU

a.0

AHI 0

U.

12-9

PART II DDTs

13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTs)

The Distributed Defect Tracking System (DDTs) provides for tracking and managing

defects and change requests throughout the life cycle of a software or hardware product. It

is designed to support large organizations with multiple sites and so is fully distributed and

suitable for use in a heterogeneous network. DDTs supports multiple development teams,

allowing data to be maintained for several projects simultaneously. In addition to reporting,

searching, and query tools, DDTs informs appropriate users of changes to defect states to

provide closed-loop tracking.

13.1 Tool Overview

This product was developed by QualTrak Corporation and has been marketed since
1989. There are over 100 sites using DDTs, with some estimated 5,000 users. QualTrak
provides consultancy and training, and supports its product with a hot-line service and an
on-line users group. A newsletter is expected to become available in the near future. DDTs

is available under SunOS on Sun-3 and Sun-4 systems, under HP-UX on HP-9000, under

AIX on IBM RS-6000 and Apollo systems, under Ultrix on DECstations and VAXs, and

under SCO Unix. It uses troff, tbl, sort, awk Bourne shell Unix utilities, but is DBMS inde-

pendent. For a local network, it supports network file sharing (NFS), ethernet client/server

User Datagram Protocol (UDP), and the Transmission Control Protocol (TCP). Electronic

mail is supported for remote networks. The examination was performed on version 2.1.6 of
this product running on a Sun-3 system. At the time of evaluation, prices for DDTs started

at $6,000.

DDTs groups defects by project to allow reporting on both the defects in a particular
project and to support organizational quality assurance activities across projects. Each

project is associated with one computer system, known as the home system. All of a

project's defects reside on that home system and on the submitters' systems as well. In ad-

dition, a subscription facility to a project is supported; in this case, defects are maintained

on the home system and the subscriber's system. A secure-in dial facility is available that
provides easy local access to defect information about remote projects. Closed-loop track-

ing means that defect submitters are automatically informed of all changes in a defect's sta-

tus by electronic mail.

13-1

DDTs PART II 0

DDTs can be used in either a menu-driven or command-driven manner. In the first case,

a user has two avenues of access; one provides the full set of functions suitable for a devel-

oper, and the other provides a subset of functions tailored towards defect submitters. 0

The system defines a defect life cycle which allows defects to be managed using a state

transition mechanism; both forward and backward transitions are supported. A defect life

cycle starts with its submission and, usually, ends with its resolution. There are nine pre- 0
defined defect states, though the user can define others by including them in a state transi-

tion table and defining allowable state transitions. (DDTs warns of any illegal transition

attempts.) Defects can be classified as enhancement requests and subsequently tracked by

DDTs. 0

DDTs uses a template to guide user entry of defect reports. Information is grouped into

the following areas: detection, submitter, laboratory, resolution, and verification informa-
tion. Detection information is used to specify, for example, the detection method, the de-
velopment phase in which the defect was detected, and defect severity (one of five levels)

in addition to identification of the test system operating system and affected project. When

available, information about the defect submitter is added automatically. The laboratory in-

formation captures information pertaining to diagnosing the defect. In addition to identify-

ing the responsible engineer, it records the type and cause of the underlying defect, 0
recommended change, and estimated fix time and date. The resolution information is sim-

ilar. Again the responsible person is identified, but this time the actual effort required to
make the fix, the development phase when the fix was made, and location of actual changes

are recorded. Finally, the verification information identifies who accepted the resolution. 0

Defect reports can be supplemented by enclosures. These are additional files containing
supplemental ASCII text. They can be used, for example, to include the data files needed

to reproduce a problem. There is no limit to the number of enclosures that can be linked to

a defect report. DDTs automatically brings up a change editor for creating enclosures. Al- 0

though the vi editor is used by default, the user can request other editors.

DDTs provides several predefined report formats. These conform with the proposed

IEEE Standard P- 1044, and with DoD-STD-2167A. They include, for example, a list of all

unresolved defects for one or more projects and a list of defects in selected states. A number

of sorting filters are available for use in constructing specialized report formats. A nice fea-

ture is a weekly report program that can be used to produce reports automatically. The met-

rics provided in weekly reports include such information as the arrival rate, fix rate, number

13-2

S.... m • m ~ m m m ...,, mll lm mm mm ll9

PART II DDTs

defects assigned to each project engineer, resolved and unresolved defects, and when these

defects were found and/or fixed.

On-line defect report displays are also available. These allow a user to identify all the

defects he submitted or the unresolved defects he, or another engineer, is responsible for.

The contents of selected defect reports can be displayed with an index pointer used to move

between different defect reports. The user can also search this index for a given string. Ad-

ditional search and query facilities are provided to answer ad hoc questions. The search op-

tion allows displaying all unresolved defects and unresolved defects of severity 1 and 2 for

one or more projects. It matches a user-defined string against the one-line summaries of de-

fect descriptions kept for each defect. The query function allows the user to specify a search

string composed of defect keywords, operators, and values combined in a C-like expres-

sion.

DDTs provides explicit support for a number of administration functions. These in-

clude cleaning up log files, checking and repairing the database, showing the status of

DDTs projects, and managing projects. Setting up a new project involves setting applicable

template files and state transition rules. The administrator also specifies the individuals and

groups who should be notified of changes to defect states and those who are permitted to

change defect states. He can customize DDTs by adding or deleting a defect state, adding

or deleting a field in the defect reports, and changing the dialog that occurs with the user

when a state transition occurs. In addition to modifying the predefined management re-

ports, the administrator can create new report types. Finally, the administrator is provided

with guidance for converting existing defect reports to DDTs format.

13.2 Observations

Ease of use. DDTs recognizes two types of users: defect submitters, and developers

who repair defects. While the menu interface provided for each type of user is similar, this

distinction allows providing a simpler interface for defect submitters. Context-sensitive

help is available in both cases. Additional guidance for expert users is available as a set of

tips. These take the form of short excerpts from the on-line manual pages and provide an

introduction to the search and query functions. Expert users can also use DDTs through a

command interface.

Template file mechanisms provide for customization and specialized defect reports can

be defined to augment the predefined reports provided by DDTs. The system includes sev-

13-3

DDTS PART II 0

eral levels of flexibility. For example, each project can employ different screens, prompt-

ing, and states transitions.

The DDTs import facility is a valuable capability. It allows the definition of converters

that take existing defect reports in a defined format, convert them to a defined DDTs for-

mat, and place them in the DDTs database.

Documentation and user support. DDTs is designed so that it can be used without

documentation. Nevertheless, it is well supported by documentation that includes a tutorial,

several examples, and sample outputs. Unix-like on-line manual pages provide for quick

reference and can be integrated into the on-line manuals supported by a Unix system.

Installation procedures are well described. They include special information that, for

example, helps a system administrator determine where to place the product by providing

an estimate of the rate of growth of the database, as well as estimates of dynamic storage

requirements.

Problems encountered. No problems were encountered in the use of DDTs.

13.3 Recent Changes and Planned Additions

A new product, Remote Distributed Defect Tracking System (RDDTs), released in

summer 1992, provides a restricted submit-only version of DDTs.

DDTs release 3.0 is due to be released in December 1992. This version will support an

X- I1 graphical user interface as well as the existing try interface. It will also support Post-

Script for enhanced graphical charts.

The QTET test harness is a product under development to provide an interface between

DDTs and test execution tools. It is based on the public domain Test Environment Toolkit;

QualTrak Corp. has added a graphical user interface and bound the Test Environment Tool- 0

kit to DDTs. QTET is expected to become available in the second quarter of 1993.

13.4 Sample Outputs

Figures 13-1 through 13-7 provide sample outputs from DDTs. Figure 13-8 provides an

example of the outputs available with the DDTs graphical user interface; it was supplied by

QualTrak Corp.

13-4

• • • m m i | | i

PART II DDTs

Bug SFDaa03277 DDTs Submitted 910305

ASSIGNED defect report bugs(l), version 2.1 Assigned 910305
2 enclosures

"Enclosure date stamp is incorreotly updated'

DETECTION ZNFORNATION IABORATORY INFORMATION

Detection methodt customer use Assigned engineer; rico

Detected in phase: post-release
Test program name: bugs
Test system:
Version of OS:

Problem severity: 3
Affects project: ddts
Need fix by: 910909

SUBMITTER INFORMATION
Subsittert Mike Manley

Organization: 0T LABX
Phone number: 33157
Address: mikey I manley

tttttC*tattg Problem (Added 910305 by nmanley) t~Cltlt5Ca

From Lori Pope at Pacesetter

)2. (New?) when we attempt to modify an existent enclosure by:

) 1. selecting On' when viewing the enclosure
> 2. exit the editor without saving the modifications (eg. no
) modifications wexe performed) - in vi you would exit with O:q!'
) 3. Exit ddts by typing Oq'.

fthe enclosure's modification date Is updated.
I

)For now, the work around is to exit ddto by typing 'x' instead of
,%'q* - this exits ddts without saving any changes.
)Mhat may not be satisfactory if you have nade changes in other SWRs

)that you wish to keep.

,a.....a*aa. design ideas (Added 910606 by ddts) e*********

stat the file before going to the editor and see if the time changed

Figure 13-1. DDTs Sample Defect Report

13-5

DDT$ PART II

DDTS MANAGEMENT SUMMARY

of

DEFECTS by PROJECT by STATE

(Tue Jul 14 14;19:11 EDT 1992)

Project New Asand Open P, lvd Verif Dup Postp Total
-_ _ __- -- - -----

DDTs 1 18 0 84 0 0 0 103

--- ----------------------- -- --- -- - -----------

TOTAL 1 18 0 84 0 0 0 103

Youngest Bug Date -) 911221
Oldest BUg Date -) 901029

Software Versions -) 2.1 3.0 2.1.3

unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0

O.S. Versions -) 4.1 4.0 Sun
SunOS unk a
none any 3.5

DDTS MANAGEDENT SUMMARY

of
DEFECTS by PROJECT by SEVERITY

RESOLVED £ UNRESOLVED BUGS

(Tue Jul 14 14:19:16 EDT 1992)

Project "Svl Sev2 Sev3 Sev4 Sevs Total

DDT* 10 24 65 12 2 103

TOTAL 10 14 65 12 2 103 0

Youngest Bug Date -) 911221

Oldest Bug Date -) 901029
Software Versions -) 2.1 3.0 2.1.3

unk 2.2 2.0.3
2.1:.2 2.0 2.0.1
bar 1.0

O.S. Versions -) 4.1 4.0 Sun
SunOS unk a
none any 3.5

Figure 13-2. DDTs Management Summary Report: Defect Reports

13-6

• • i I II I I

PART II DDTs

DDTS MANAGDEMET SUOMARY
of

DEFECTS by ENGINEER by SEVERITY
UNRESOLVED DEFECTS ONLY

(Tue Jul 14 14:19:22 EDT 1992)

Assigned SaV SoV SaV Sev SeV Total

Engineer 1 2 3 4 5

MUanley 0 0 4 0 0 4

rioo 0 1 9 4 1 15

david 0 0 0 0 0 0

davep 0 0 0 0 0 0

carol 0 0 0 0 0 0

UNASSIGNED 0 0 0 0 0 0

TOTAL 0 1 13 4 1 19

Projects surveyed -) DOTs
Youngest Bug Date -) 911221
Oldest Dug Date -) 901029
Software Versions -) 2.1 3.0 2.1.3

unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0

O.S. Versions -) 4.1 4.0 Sun
SunOS unk a
none any 3.5

Figure13-2 continued: DDTs Management Summary Report: Defect Reports

13-7

DDTs PART II

DDTS MANAGEMENT SIUOMARY

of
DEFECTS by SUBMITTING •NGINHM by SEVERITY

(Tue Jul 14 14-19:35 EDT 1992)

Submitting Sev Sev Soy Sev Sev Total
Engineer 1 2 3 4 5

muanley 4 3 29 3 1 40

Cindy 3 5 22 7 1 38

ddts 2 6 11" 2 0 21

carol 0 0 3 0 0 3

rico 1 0 0 0 0 1

UNASSIGNED 0 0 0 0 0 0

TOTAL 10 14 65 12 2 103

Proj ects surveyed DDTx
Youngest Bug Date -) 911221

Oldest Bug Date -, 901029
Software Versions -) 2.1 3.0 2.1.3

unk 2.2 2.0.3
2.1.2 2.0 2.0.1

bar 1.0
0.8. Vermions -) 4.1 4.0 Sun

SuanOS unk a
none any 3.5

Figurel3-2 continued: DDTs Management Summary Report: Defect Reports

13-8

PART II DDTs

DDTS MANAGDID SUMMARY

DEFECT ARRIVAL & REPAIR RATE

ALL SEVERITY LEVELS

(Tue Jul 14 14:19:40 EDT 1992)

Week Date # No w Resolved Diff # Unresolved

1 901028 1 0 1 2

2 901104 0 0 0 2

3 901111 3 2 1 3

4 901118 0 0 0 3
5 901125 0 0 0 3

6 901202 0 0 0 3

7 901209 2 1 1 4

8 901216 1 0 1 5

9 901223 0 0 0 5

10 901230 0 0 0 5

11 910106 1 0 1 6

12 910113 4 0 4 10

13 910120 1 0 1 11

14 910127 4 0 4 15

15 910203 0 0 0 15

16 910210 1 0 1 16

17 910217 0 0 0 16

18 910224 0 0 0 16

* 19 910303 6 0 6 22

20 910310 0 0 0 22

21 910317 1 0 1 23

22 910324 2 10 -8 15

23 910331 0 0 0 15

59 911208 3 2 1 19

Projects; surveyed -) DDTs

Youngest bug Date -, 911221

Oldest Bug Date -) 901029

Figure 13-3. DDTs Management Summary Report: Defect Arrival and Repair Rate (All Levels)

13-9

DDTs PART II

DOTS NAN&GMEWT SU"O Y

DEXECT ARRIVAL & REPAIR RATE
SEVERITY 1 & 2 DEFECTS ONLY

(Tuf Jul 14 14:19:40 EDT 1992)

Meek Date # New # Resolved D0ff # Unresolved

1 901028 0 0 0 0
2 901104 0 0 0 0
3 901111 0 0 0 0
4 901119 0 0 0 0
5 901125 0 0 0 0
6 901202 0 0 0 0
7 901209 0 0 0 0
8 901216 0 0 0 0
9 901223 0 0 0 0

10 901230 0 0 0 0
11 910106 0 0 0 0
12 910113 0 0 0 0
13 910120 0 0 0 0
14 910127 1 0 1 1
15 910203 0 0 0 1
16 910210 0 0 0 1
17 910217 0 0 0 1
10 910224 0 0 0 1
19 910303 1 0 1 2
20 910310 0 0 0 2

21 910317 0 0 0 2
22 910324 1 3 -2 0
23 910331 0 0 0 0

59 911206 1 1 0 1

Projects surveyed -) DDTa M
Youngest SeveZLty I or 2 bug Date -, 911213
Oldest Severity I or 2 Bug Date -) 910131

Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate (Sev. 1 & 2)

13-10

i I I I

PART II DDTs

Arrival Rate of New Bugs (All bugs)

16 + N
of IN
bugs I N

N
12 + N

IN
IN

N
8+ N N

N N
I N N NN

SN N N NN N
4 + NN N N N N NN N

IN NN N N NN NN NN N
N N N N N N N NN NNN N NN1 NN N N

INN iN NNNN N NMN NNNMN OIM MIN ' NNOINN NNN UN1 1
0

0 5 10 15 20 25 30 35 40 45 50 55 60
WM~l N~tMZR

rin Jul 17 11:46:59 1992
Start date - 901026 Znd date - 911208

Bug Resolution Rate (All Bugs)

16 +

#t o I
bugs I

12 +

I R
9I + Rt a

I a

4 4R.
a R

R UtI R R

I a n aIa+ R a R n R R
i tIt R a n RR R

R R in IR R R3MunM
i R it IR R 1 R Rl R nRRnRRRRRI

Fri Jul 17 11M47O0M 1992
Start date - 90102S Xnd date - 911206

Figure 13-5. DDTs Management Summary Report: Sample Histograms

13-11

1

DDTs PART II

Tota3. Number of Open Bugs (All Bugs)

48 +
#of o
bugs (

000
35 + 000

I 0000
0000 00I

0 0 00000 0000
i oo oao~uos::~u~euuoooo ouooo o24 + 000 00000000000000000

I 00~0000 000000000000000000000000~
12 +

0 5 10 15 20 25 30 35 40 45 50 55 60
vBE NUNB=

Pri Jul 17 11t47:01 1992
start date - 901028 Znd date - 911208

Arrival Rate of New Bugs (Sev I r 2 Bugs)

4+ N N
of I N N
bugs K

N
34 N N

I NN N

2+ N N N
I N N Nt

N x N
N x N

0 - - --- . .- - - .- -

0 5 10 15 20 25 30 35 40 45 50 55 60

Fri Jul 17 11:47t01 1993
Start date - 901026 Nad date - 911208

Figure13-5 continued: DDTs Management Summary Report: Sample Histograms

13-12

-- -- l ma i s

PART II DDTs

Bug Resolution Rate (Soy 1 G 2 Bugs)

of 3 + R

bugs I R
R3 I
R

+ R RR R n
R IR R R U

I 3 11131 I
R R 3 3 R U311133 I
1 It R 3 3 R 3111131RR R R R 13111RII + R R R RRRR RR RRR

R R R R R RRRR RR IRRR
R R R R R 1111RR13R
R R R R R RRRR RR 3 U1

0 5 10 15 20 25 30 35 40 45 50 55 60

"MEE NWOMh
Fri Jul 17 11:47:01 1992

Start date - 901029 End date - 911208

Total Nuibe of Open Bugs (Bev I a 2 Bugs)

+ 0

Of I0
bugs I 00000

I 00000
1 + 00 0000 000

00 0000 000I osmsssm :us oooo

I ooo ouohuuomuasoam::ouooumo
I 000 OD0000o0:u ouo .oo I

2 * ooooo uusmsm •uuuisssueumsu;
I oooooog:zs u sss ::I

0 5 10 15 20 25 30 35 40 45 50 55 60

Frir Jul 17 a1147t01 1,92
2tart date - 901020 0d date ,, 91120

Figure13-6 continued: DOTs Management Summary Report: Sample Histograms

13-13

' "' " ,,., .,.niiammmni atom imam HI I I em0t 0i

DDTs PART 11

DDTS MANAGEMENT SUISIARY
Three Lin* Bug Sumaries

Tue .Jul 14 14z20t02 3M2 1992

DEFECTS FOR PROJECT DD~a

Bug Number - 000aaOOO051, Project - DD~s,
StNM, Sv-3, Things to remember for the DDTa Installation Upgrade
Module' Upgrade, Vora - 2.l,Engr - mmanley,found: 911019,rized: ??

Bug Number - 000aa00079, Project - DM8s,
St-A, S"-2, buga~i) index printing needs to be much faster
Modules bugaci), Vero - 2.1,Engr - rico,Vound: 911213,Fized: P?

Rug Number - OO0aaOOO26, project wDWa,
St-A, Sv-3, Only 1 line should be repeated on page forward thru indexa
Nodule: bugs(l), Vera - 2.l,3ngr - rioa,Vound: 92090S,F1izod:

Bug Number - Q~oaaOOOPS, Project - DD~s,
St-A, Sv-3, This in a reminder about 3.1100(3)
Nodule: bugs(l), Vera - 3.O,Engr - ricoFound: 911201,F~iXed: ??

Bug Number - OQ0aaOOO78, Project - 1D~a,
St-A, Sv-3, Adwinbug needs to set up CH stuff
Nodule:a adminbug, Vera - 2.2,Engr -manaley,found:- 911212,Fixed: P?

Bug Number - Q00aaOOO6l, Project -DMa,
St-A, ft-3, the mail. aubject template file needs documentation
Nodules mailasubjeot, Vero - 3.O,Engr - riaooround: 911213,rixed: PP

Dug Number - OOQaaOOOS6, Project - DDIa,
St-A, Sv-3, 01-notify needs to be in proj. notify file
Nodule: admizibug, Vera - 3.0,ahmp smaaley,Yound: 311219,F~ixedt 7?

Bug Number - SVftaa3263, Project - Ds,
St-A, Sw-3, G-2. suggesta moving a per-projecting cmom templatet files
Module: buga~l), Vera - 2.1,Engr - rioo,Found: 910114,llned: ??

Bug Number - $1Daa03270, Project - DD~s,
St-A, Sv-3, G.E. wents to have a mechaniam for total mail supression per sta
Nodule: bugmail, Vera - 2.l,ZWg - riao,?aumd: 910130,Vixed: ??

Dug Number - SrbaaOS276, Project - DD~s,
St-A, ft-3, Last-mad not ipdated when enclosure Is modified
Nodules buga(l)s, Vera - 2.1,Eagr - riaoc,oundt *10305,?ixed: P

Bug Number - 87ea&03230, Project - D~a,
St-i, Sv-5, Now bugs loaded via bbox are not displaye"
Nodule: bugs(l), Vera -2.IBugr - rioo,Voundi 910419,rixe~ds 911221

Figure 1346. DDTs Managemenvt Summary Report: Bug Sumnmaries

13-14

PART II DDTs

DDTS XANAGDEDIT SUMMARY
of

General Statistics
(Tue Jul 14 14:20:09 ZDT 1992)

Projects surveyed - DDTs
Youngest Bug Date -) 911221

Oldest Rug Date -> 901029
Software Versions -> 2.1 3.0 2.1.3

unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0

O.B. Versions -) 4.1 4.0 Sun
SunOS unk a
none any 3.5

Assigned Engineer Statistics
Of 103 assigned bugs:

NO ONH assigned 0 bugs -) 0.00%
smanley assigned 44 bugs -) 42.72%
rico assigned 43 bugs -) 41.75%
david assigned 15 bugs -, 14.569

Carol assigned 1 bugs -) 0.970

Bug Submission Statistics
Of 103 bugs submittedt

umanley submitted 40 bugs -> 38.83%
Cindy submitted 39 bugs -) 36.890
ddts submitted 21 bugs a) 20.394
Carol sumiltted 3 bugs -, 2.91%

rioo submitted 1 bugs -) 0.97t

Now round Statistics
Of 103 bugs found:

10 bugs found by author code review - 9 .71"

20 bugs found by in-house nowl use - 19.42%
2 bugs found by group code review - 1.940

60 bugs found by customer use -) 58.250

8 bugs found by interactive test -) 7.77%
1 bugs found by random unplamned test -) 0.97%
2 bugs found by functional test -) 1.941

Nov Resolved Statistics
Of 14 bugs resolved i

53 bugs resolved by source code .) 63.10%

4 bugs resolved by design -> 4.760
6 bugs resolved by documentation -> 7.14%

13 bugs resolved by no fix - 15.40%
3 bugs resolved by unmeproduaible -) 3.57%
5 bugs resolved by not a bug -> 5.950

When Caused Statistics

Figure 13-7. DDTs MAnagment Summary Report: General Statistics

13-15

- 1

DDTs PART II 1

Of 81 bugs:
15 bugs caused during design -) 16.52%
36 bugs caused during post-release -) 44.44%

12 bugs caused during alpha test -) 14.91%

3 bugs caused during beta test -) 3.70%

10 bugs caused during implementation -> 12.350

3 bugs caused during investigation -> 3.70%

2 bugs caused during integration -) 2.47%

When round Statistics

Of 103 bugs founds

12 bugs found during alpha test -) 11.65%

74 bugs found during post-ralease -, 71.34%

4 bugs found during implementation -) 3.89%

2 bugs found during design - 2 1.94%

9 bugs found during integration - 6 8.74%

1 bugs found during investigation -) 0.97%

1 bugs found during functional test -) 0.97%

When fixed Statistics

Of 30 bugs fixed:
51 bugs fixed during post-release -) 63.75%

13 bugs fixed during alpha test) 16.25%

2 bugs fixed during beta test -) 2.50% 0
3 bugs fixed during integration -) 3.750

3 bugs fixed during design - 3.750

6 bugs fixed during investigation - 7.50%

2 bugs fixed during implementation - 2 2.50%

Severity statistics
Number of severity 1 bugs - 10 -> 9.71%

Number of severity 2 bugs - 14 ,) 13.59%

Number of severity 3 bugs - 65 -) 63.11%

Number of severity 4 bugs - 12 -) 11.65%

Number of severity 5 bugs - 2 -) 1.94%

Status Statistics

Number of new bugs 1 -) 0.97%

Number of open bugs 0 -) 0.00% 0
Number of resolved bugs 84 -) 81.55t

Number of postponed bugs - 0 - 0.00%

Number of duplicate bugs - 0 -) 0.00%

lumber of verified bugs 0 -) 0.000

number of assigned bugs - 18 -) 17.43%
Number of integrated bugs - 0 a) 0.00%k
lumber of released bugs - 0 -) 0.00O

Figural3-7 Continued: DDTs Management Summary Report: General Statistics

13-16

| | |

0PART 11 DDTs

All Defects in Selected Projet Severe Defects in Selected Projects
3ubp5.by S- d.5w" 1. 23. I.&UP5b D~Slb iIM~u 1i.ny 1. A2)

0*0

ADl Defects in Selected Projects Unresolved Defects in Selected Projects
D~bgpSV Oh jftSWU .A.0. I3.& V) 3sp by SIMMYOtkf SW S~. A. A 0)

33

£4

Defect Amival & Peolution Rate - All Bugs Severe Defec Arrval & Resolution Rate - All Bugs
hg~~iA~z3.FmW& Fi .Rion55 a4& Z3hSt 8l.&2)

...¶

Figure 8. Examples of GUI Oultputs

13-17

PART II EDSA

14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA)

EDSA is a browser that supports understanding and static analysis of Ada source code.

It provides such capabilities as control and data flow browsing, pretty-printing, elision-

based viewing, and search management. In addition, its annotation capability can support

the conduct of code reviews and inspections, as well as capture the progress of formal ver-

ification activities.

14.1 Tool Overview

This product was developed by Array Systems Computing, Inc. and has been marketed

since 1991. It has between 5 and 10 users. Array Systems Computing provides software

consultancy and training, and performs independent verification and validation activities.

Tool users are supported by a newsletter and hot-line support. EDSA is available under

Unix, VMS, and DOS. An X-Windows version is available. The examination was per-

formed on version 2.0 of this product running UNIX on a Sun-4 system with OpenWin-

dows. At the time of evaluation, prices for EDSA started at $3,750.

Use of EDSA starts with parsing an Ada source code file. This produces an attributed

syntax tree and symbol table that are stored in the user library. A successful parse is not

required for browsing and any errors encountered during parsing are reported, together with

appropriate warnings. When a program is contained in several files, compilation units must

be parsed in compilation order. The output of the parser is used for browsing and EDSA

can be invoked on any of the parsed files independently. If required, preparation of a pretty-

printed output version of the original source file is available. This uses standardized inden-

tation based on the parse tree to emphasize the control structures of the code.

EDSA supplements the traditional random traversal and string searching common to

many browsers and editors with several logic-based traversal methods. These additional

traversal methods allow a user to exploit the structure and meaning of the code. Specifical-

ly, the following types of traversal are supported:

0 Random. Movement is achieved by usage of the cursor and scrolling keys, and by a
set of defined focus commands.

* String searching. String commands find specified items in the code, for example, the
statements that a particular statement depends upon.

• Syntax directed. This allows the user to follow paths defined by the syntax tree.

14-1

0. - - - - - . - . • rm eanmm a m m u

EDSA PART II 0

"* Dependency. Provides for tracing back all the statements that the currently selected
statement depends on (typically these statements are the controlling statement and the
statements that define its input variable values).

"• Data flow. Allows tracing back to where a variable was originally given a value and
then ahead to every usage of that value until it is changed.

"* Control flow. Follows the control logic of the source code.

"* Object-usage. Allows visiting every statement where an Ada object (that is, a vari-
able, parameter, component, or slice) appears in a specific context. 0

In each case, a stack and backtracking facilities are provided for switching between paths

when more than one path can be followed.

When browsing, the source text is pretty-printed in the view window. This window

changes as the file is a traversed or new views constructed. The message window displays

the most recent commands entered and, sometimes, messages relating to the current com-

mand. The response box is a temporary window used to notify the user of problems with

an entered command or to ask for verification of a command. During browsing, the user

can switch to an editor and, at the end of the edit, cause the syntax tree and symbol table to

be appropriately updated.

Views are provided to help mitigate the complexity of perusing large programs. Views

are a selection of some or all of the statements in the source code. By showing only specific •

parts of the code, they allow a user to restrict himself to only those features of interest, for

example, those portions of the code that are within a particular depth, that use a specified

symbol, or that use a specified structure. Views can be created, modified, printed, and com-

bined.

EDSA's statement annotations are useful for adding documentation to source code

without modifying the original source file. Whereas comments exist in both the source code

and syntax tree, annotations exist only in the syntax tree (although options to cause them to

be included in the source code are provided). This can be useful for recording temporary 0

observations during an analysis session or for recording other types of working notes. De-

pending on the value of a customization parameter, these annotations act like special com-

ments or are hidden from view until required. After editing, EDSA can cause the syntax

tree and symbol table to bý appropriately updated and annotations inherited from the old

tree, adjusted if necessary, to conform to the changes.

Pebbling is another type of annotation. Here the annotations, or pebbles, are used to

record the fact that statements have been examined and that some conclusion about their

14-2 "0

PART II EDSA

correctness has been reached. The pebbling feature uses dependency information to link

each of a statement's inputs to all of the statements that might provide values to those in-

puts. It propagates correctness information by automating a generalization of the following

rule from propositional logic: Given that A is true, and that A being true implies that B is

true, then it follows that B must be true. (A, A ---) B :=> B). The user places white pebbles

to indicate that the statement and its contributors are assumed to be correct, that is, globally

correct, for verification purposes. He places grey pebbles to indicate that only the statement
itself is assumed to be correct, that is, locally correct. If the contributors to a locally correct

statement are globally correct, EDSA automatically replaces a grey pebble with a black

pebble to indicate that global correctness has been derived, although not asserted.

14.2 Observations

Ease of use. A user can interact with EDSA using a command line with auto-comple-

tion, cursor keys or a mouse to move around the menus and command line, or key bindings.
In the latter case, default keys are bound to the most commonly used EDSA commands; the

user can adjust these bindings to customize EDSA as desired. Additional opportunities for
customization allow modifying text appearance and system parameters. Examples of sys-

tem parameters include switches that specify whether annotations should be hidden and
whether the user should be queried for backtracking to previously skipped paths. Expertise

level is another system parameter. It allows a user to be assigned one of six levels of exper-

tise that are used to determine the extent of help, menus, and warnings messages provided.

Documentation and user support. The documentation is extensive and includes sev-

eral useful examples. Array Systems Computing were prompt and helpful in responding to

queries.

Problenm encountered. EDSA performed exactly as described in the documentation.

No problems were encountered during its use.

14.3 Sample Outputs

Figures 14-1 through 14-6 provide sample outputs from EDSA.

14-3

EDSA PART II

separate (Ll-Compile
package body LLý_2OKZNS in

procedure Advance (eon out DOOI.EM, next :out LLTOKEN; sore in BOOLEAN
t-TUE) is

procedure Get-Char(char :out CEARACTER) is
bein

if EndOfWile(Standardlnput) then

elsif End.Of..Line(Standard.iiput)then

Skip.Line(Standard-Input)i

alse- 0
Get(Standard-Input, char)

end if.
end Get-Char;

end Next-String;

begin

-Skip vhite space end cments0
vbile (current char-ASCII. EU) or (current char-ASCII .KT or

current~char-' I) or (current-char-P-1 'loop
if current char-'-' then

Lookhead,

Skip_.Iine(Standard.lnput)

end if;
Cher-Advance,

end loop;
if ourrent char-ASCMIEOT then

elm if aurrent-.char-l"' then
NextString;

elsif aurrent-ohar-1"' then
Reft-Charaorter;

elsif (current-char in UPPEE.CASEJZTTUR)or (curront-eher in
L~wUUkCASz3L1ZTE) then

flext Identifierl

Nazt-Spaqlys;
end If;

end Advance;
eOd LLTOKDIS

Figure 14-1. EDSA Threads View of Compilation Unit LLTOKENS

14-4

PARTHI EDSA

separate (LliCoispile
package body LLTOT.DS is

*procedure Advance(sox : out BOOLEAN, next out LLTOKEN; more :in BOOLEAN4
:-!RUX) is

procedure Next.String is

begin

while caurrentchar/-"'1 loop

exiýt when Znd.OfjLina(Standard-Input)

and loopi

end et~Strinq,

begin

-Skip white space and comments
while (currentchar'.ASCX1.ETX) or (current~char-ASCX .IT)or(

currentchar.' I) or (current-char-' -' loop
if currentý_c)ar-'-' then

e;it when lookchar/-& '

end if,

end loop,

end Advance,

*end L.TZS

Figure 14-2. EDSA Breaks View of Compilation Unit LITOKENS

14-5

EDSA PART II

next~ttribte :-me TR I-"/bLft/gs

id M f : ~ " ~ 1 5 n a
Procedure NextjIdoentllor is

vwIile C cv eto Trn) o C airreul-drne in
* ~~~current,.cgmr.'..) lowIn o

Ii'Ic.~samutnun.then
* *r~ltvS~eC 3:. cutrgentd.dmr

OWd It.
Char-Advacez

tableladox t- Llttadc Prlatvemu. LIIUJAL)
it tableladeu4 then

mbxt.attrlhutae T~xm~ : w . m6Cmml. c @tES.,
FALSE* FASE OitVASO)

W c~rOKO fleetSp*CSa IS
frifitvalueC I) :- curremmtchmz'
Pf curvent-chmer'.' UhM
-Char-Advance!

~)0Uh-iSs I.CONg 10. LL.TG dvnSuce.bomg~~ t or.I kS1dVl~hltele3) ccrremfwe I
11flex -al ternaieve

Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable I0

14-6

PART II EDSA

prlntvsluo -'tho

Exit di'mn lok-dehr/--
Sldpjiq*(o Stwui.edJWsA);

on SR'rt..of-.11m :- mini:
*Char-Ameco:

end love:
If current-char-ASMf.1f then

was :- TM1:
olist current-dmkr-'*' thes

olsif currqntchor.' then
Nout-charector.

olsif (Ccurot..hrI ~5.ILETN)o ru~mrI

trnd inif:ýW
rcrrn-wi

Adexncoacse
404.C aforard *: of airvlve

)fotSsoend t

WNMPOWiilo2 statemonts I
')flOt-statesent

* FIgUre 14-4. EDSA Screen of Statement Traversal Using Control Flow In Unit LLJ,-OKENS

14-7

EDSA PART II

"541 onfalhtaust a * urrmut-chau
6142 cher..Miacez
11143 and If.
0144 Oad if;
045 aelvf currot-char--' than

0147 If curart it.*it tam
0143 Priatmtvelw. I c:. aent-char:
$141 Cha.Mvucg:
6151 esit
0152 OIW.*EUnce
al153 W54 1?

655 ff I the

61 Eeatimog aswig, sometatift that 9111 be attached to thesealected stammte. 6
11150 rat mtiIfy the wifinsl cud. 16.Vla astv, rotor uill Cono c
WO1 41110111)7 tages, &Aeutatlas slly ethr theirproveocajJ

0162

8185
6166
11167

0179 .Il
6171 OWIt.inn2 suit uluji 1* -L0V.iU StandagrliUmAt3
617 Char..Mvaicg:

61175 prismtWlC I) s-

6177 tablelludmsu LfltioC Strintit O0W 35I nhs K.Ottributs I. as iWA - t 170. .usewal (IV-FL1.
fw J(contrlhutsr I of 1)

6141 Pfletwelvat 3 1 .wmtisL0S
6142 thbr.*msu'c
6143 sdI f:

11143 SISIF aurrent.Ahii,-, than
6146 thuani

6146 sr~~~iat,ule .a~ir

0151a 3.Ofandlftele tN
6It else "W

613 ead M.:
614 ulitLatim. S m* L~IFuIC W UThen.. N Ile. C3

9,11
6140 bi

016" Ifd thtu p14SRWZMta

61172itsle IIntaw I cureatch

0113 1If I'JU3tRPWti

6174 new Its0175 alt ami £ii..0F.LineC StandatrIinat 3
11176 oeur.MKaice

WOMMONA-Ccntributer Iit of)

-2'CemIq4 View locating ...
-Keowutiftg Vvo lecatimne ...

Figure 14-5. EDSA Annotations Example In Compilation Unit LITOKENS

14-8

0 PART II EDSA

r*x sbulkee -.4btmwh
sl Mt RIPINl-u 3 LIMA(i -Oiom . PJ

ows OW It:
on? net.attribuis iman USCC LIT. UNISJS. C INDS)P-ALSi

on . FALK. MAUi. lmuum)
WN SOWN@ll:~lr

"Slo

oe ilis go~~Lfll t h mratum~i Is
10111 LOW5 -s at teaa.dat-h 1.SUT3a

V I It l.UShUIU1

9113lel

""ISm t* iiiCpltwls
oilS t1 W :. Ofirwi *Idinutltier
"17 VAd It.
11111 new.atrflbui :- as wLJIUEc nU. ilrN.(UNucts- a).

Slli

1112 issiC I) 1:- aarrustdha
irnn u
SIZ? WIS a Crumt..ar;

1:1111sO ceatrilIAta I

toS~ ~ ms j~E-j 1

nM4xkt:-N ubMlWI -hI. fmoh .COM
Orift"101

oil tesr u.Jmthesl

gil?

"its OuWNttl~ : 1JinC NUt. AUNin. C 61119SMALS
S119 MRL PAME. PH fatum

SInn aisslac I 3.1 argn..v
entas It Urnww

inn3 seauuc 2) t. Om"tALCa

SINr gIlt:

IN3(mI, iu. . e n

* ~! MinmUlrbumWtfiesid lI'M ailoepr 'listI

Figure 14-4. EDSA Pebbling Example In Compilation Unit LLJTOKENS

14-9

PART II LDRA Testbed

15. LDRA Testbed

The LDRA Testbed provides both static and dynamic analysis. In static analysis, source

code is analyzed to give information on control, data, and information flow, logical com-

plexity, and procedure and variable usage. Conformance to user-weighted programming

standards is checked. Dynamic analysis capabilities provide assertion analysis and mea-

surement of test completeness in terms of subcondition, statement, branch, and Linear Code

Sequence and Jump (LCSAJ) coverage. Analysis of test data set redundancy is provided to

optimize the test effort. Identification of the test data sets that execute each line of code fa-

cilitates software modification.

15.1 Tool Overview

The LDRA Testbed was developed by Liverpool Data Research Associates. It is mar-

keted by a subsidiary company, Program Analysers Ltd., who also provide a series of train-

ing courses and consultancy services. Additional third party products are available in

Europe. The Testbed has been commercially available since 1974 and there are over 400

current licensees. It is available for eight languages (Ada, C, Fortran, Pascal, PL/M 86, PL/

1, COBOL, and Coral 66) on a wide range of operating environments. The following partial

list exemplifies the scope of this range of environments: Apollo machines under Unix, DEC

VAX under VMS, Unix, or Ultrix, IBM under CMS, DOS or TSO/MVS, Sun 3 and Sun 4

under Unix, and Hewlett-Packard under RTEA or HPUX. Using windowing capabilities, a

graphical interface is available for Sun, Apollo and, in some cases, VAX workstations. The

command line options available for the VAX/VMS and Unix environments differ. Unix us-

ers can set options to expand included files where possible, generate diagnostic printouts,

and initialize test profiles. Several additional options are provided in the VAX/VMS envi-

ronment, for example, the ability to create a log file of LDRA Testbed usage, to limit the

type of coverage monitored, and to format or pack the generated execution history.

The evaluation was performed on version 4.8.01 of the Ada testbed running on a Sun 4

under Unix. At the time of evaluation, prices for the testbed start at $12,000, depending on

the class of computer and language.

LDRA Testbed is a menu-driven tool. Its application begins with static analysis of the

software under test. This lexical and syntactic analysis produces a reference listing contain-

ing source code reformatted to LDRA Testbed reformatting standards. Reference line num-

15-1

LDRA Testbed PART II 1

bers are given for each statement line. At the same time, the source code is searched for

violations to the applicable set of language standards provided with the testbed. These stan-

dards check for conformance to much of the Safe Ada Subset. Reporting on any particular

standard is optional, the user selects appropriate standards by awarding penalty marks

greater than zero for violations; the static analysis produces a total penalty award for the

analyzed source code. Where appropriate, the user can also specify acceptable limits for

particular standards. 0

Complexity analysis is based on the control flow structure expressed in terms of basic

blocks. The complexity is reported in terms of the number and average length of basic
blocks, the number of control flow knots, and cyclomatic complexity. In addition, two ap-
proaches are used to analyze program structure. First, interval analysis reports on the reduc-

ibility of the software and degree of nesting. Second, the program structure is evaluated

against a set of user-tailorable language construct templates, an approach called structured
programming verification. Two further metrics, essential knots and McCabe's essential
complexity, are provided to report on unstructuredness. The user specifies whether com-

plexity analysis should be applied to all program units or limited to an identified set of pro-
gram units. Kiviat diagrams are provided for reporting of the various complexity and
structure metrics. These diagrams allow diagramming multiple metrics simultaneously,
each with its achieved and user-defined upper and lower bounds.

The Data Flow Analyser reports procedure call information, data flow anomalies, and
procedure parameter analysis. Weak data flow analysis is applied to identify undefined data
variables and defined variables that are redefined or undefined without first referencing the

previous definition. Procedure parameter analysis classifies parameters as referenced only,

defined only, both referenced and defined, or not used; this analysis is carried out across

procedure boundaries.

Information flow analysis is a new capability that provides information on the interde-

pendencies of program variables. LDRA Testbed currently supports analysis of backwards

strong and weak dependencies on a procedure-by-procedure basis. This capability can be

used in two ways. First, as a source of documentation, for example, to support identifying

the consequences of a software change. Secondly, the user can specify information flow de- 0
pendency assertions as special comments. The testbed then compares the expected depen-

dencies with actual dependencies, reporting the results.

The Cross Referencer performs a complete cross-reference of all data items used in a

program. The type of each data item is classified as global, local, or parameter. For each

15-2

i a I I

PART II LDRA Testbed

procedure, the referencer also identifies all other procedures that this procedure calls, and

all procedures that call this one.

LCSAJ analysis is the final type of static analysis provided. It aids the user in isolating

LCSAJs by highlighting, on a source code listing, the start and finish of the linear code se-

quence of each LCSAJ. Unreachable LCSAJs, and any other unreachable code statements,

are indicated.

The Dynamic Analyser instruments source code with probes which, upon execution,

write information to an execution history file. This is usually done by writing to the host

disk at run time. To allow for host/target computer configurations, however, the instrumen-

tation can be adapted to channel the execution history generated by the instrumented target

image back to the host and stored for subsequent analysis. This may be achieved by using

a spare serial line. Alternatively, it may be possible to arrange for storage of the execution

history using an area of memory on the target, with this buffer subsequently uploaded to

the host.

After instrumentation, the user compiles and links the instrumented program in the usu-

al way. For simple programs, the resulting executable can be run under control of LDRA

Testbed, which queries the user for the names of input and output streams. Alternatively,

the program can be executed independently of the testbed. In either case, after the program

has run, the user invokes the Dynamic Coverage Analyser to analyze the generated execu-

tion history and provide a name for the current test data set. The coverage analyzer takes

account of the results of previous test data sets to accumulate the execution coverage over

a series of test runs. (The user has no direct control over adding an execution history to the

accumulated coverage data; this is handled automatically.) For each of subcondition, state-

ment, branch, and LCSAJ coverage, the analyzer provides a list of the respective items con-
tained in the program and identifies the old, new, and total coverage percentage achieved
for each item. Unexecuted items are identified. In each case, this is followed by a summary
that reports the total number of executable statements, branches, or LCSAJs, as appropri-

ate, the number that were executed, the number not executed, and the corresponding test
effectiveness metric.

The user may request a dynamic trace to explicitly show the flow of control resulting

from the test data set. This trace may be limited to specified procedures, or to between a

user-specified range of code line numbers. The LDRA Testbed will override this request if
the resulting display will be too large.

15-3

LDRA Testbed PART II 1

The testbed uses three Test Effectiveness Ratio (TER) metrics to report on the effec-

tiveness of the test data:

• TERI = Number of statements exercised at least once / Total number of statements

* TER2 = Number of branches exercised at least once / Total number of branches

* TER3 = Number of LCSAJs exercised at least once / Total number of LCSAJs

In terms of coverage, TER3 lies between branch and path coverage. That is, LCSAJs pro-

vide a measure that is more stringent than branch coverage without incurring the overhead

of path coverage. Additionally, LDRA Testbed reports the number of overlapping LCSAJs

containing each reformatted statement as the "density." This figure can be used as a mea-

sure of the complexity encountered when reading or modifying the program.

When a program contains tasks, the generated execution history will contain the inter-

leaved execution histories of those tasks. LDRA Testbed can distinguish between these

multiple histories, but some special user actions are required to assist in the processing of

the separated histories.

The user can embed assertions in Ada comments. These special comments can be used

to specify pre- or post-conditions applying to a section of code, check that inputs satisfy

predetermined ranges, or check that loop and array indices are within bounds. When con-

formance checking is switched on, the testbed translates the special comments to execut-

able code and inserts a user-tailorable failure handling routine. The supplied failure

handling routine simply prints a message identifying the failing assertion and then raises a

fail exception. It is the user's responsibility to determine appropriate assertion conditions

and to ensure that the assertions are positioned where valid executable statements are al- 0

lowed in the source code. The assertion format and, to some extent, syntax and semantics

are tailorable via means of a parameter file.

Two final capabilities provide some limited support for regression analysis. A Profile

Analyzer is provided to compare the coverage profiles generated by a series of test data

sets. It identifies any data set(s) that are redundant, that is, those that do not contribute to

increasing the overall coverage. Where two or more redundant test data sets are identified,

LDRA Testbed will recommend removal of the one that generates the largest execution his-

tory. For each executable line of code, the Dynamic Data Set Analysis option identifies the

test data set(s) that execute that line. This allows the user to determine which test data sets

are affected by a modification and, therefore, the tests that must be repeated.

15-4

PART II LDRA Testbed

The results of testbed analysis are examined using a viewing option. They can be

viewed at either the compilation unit level or system level (that is, for the full set of com-

pilation units). Various textual displays are available or the user may access a submenu of

graphical displays. Navigation through textual displays is command driven. Graphical dis-

plays are available as bar charts of complexity and coverage measures, Kiviat diagrams of

quality metrics, flowgraphs of the software control flow graph, and call-trees showing the
procedure hierarchy. Static and dynamic views of both call-trees and flowgraphs are avail-

able. The static control flow graph can be annotated with the results of coverage analysis.

In addition, the user can request an active flowgraph that illustrates the execution achieved

by the last test data set. Navigation through the graphical displays is provided via selection
from a set of icons that support such functions as automatic zooming and printing a screen.

15.2 Observations

Ease of use. Overall, LDRA Testbed is very easy to use and provides a broad range of

testing facilities. It automates all repetitive tasks and requires no redundant user input; for
example, a special script is provided to facilitate testing of software composed of many

source modules in separate files. This script, called tbset, allows a user to associate a name

with a set of files and manipulate, list, and select sets. LDRA Testbed can be invoked from
tbset to apply user-selected testbed operations to a chosen set of files as a group. In this
mode, however, some usual testbed options are not available; in particular, the user cannot
limit processing to a named set of files or limit reporting to a named set of program units.
In addition, only system-wide analysis results, a call-tree display, and a variety of flow

graphs are available for viewing. (To access results for particular software units, the user
can view results through the testbed directly.) If necessary, tbset allows the user to spawn

a shell script for non-testbed related processing.

The Management Summary report provides useful high-level information on the qual-

ity of the software and on the effectiveness of testing to date. More detailed information is
provided in a series of analysis reports, some of which are very lengthy. While some users

may find the provision of multiple alternative complexity measures useful, others will find

much of this information redundant.

Graphical outputs are available on Sun, Apollo, HP, IBM RS6000, VAX, and most oth-

er types of workstations with windowing capabilities, histograms drawn in orthographic
projection are available for any terminal supporting VT 100 graphics. These histograms are

15-5

LDRA Testbed PART II 1

used to profile coverage information and summarize information on the program quality,

complexity and structuredness. Full color is available for graphical displays. All graphics

displays can be exported as Postscript files.

Documentation and user support. The supplied documentation is well-written and

comprehensive. It includes a standard interface file to facilitate using LDRA Testbed out-

puts as inputs to other tools. This file allows testbed information to be viewed at three lev-
els: procedure/function, source module, and project (that is, some related set of source
modules). Through this interfacing facility, LDRA Testbed has been used with StP, Team-
work, Typhoon, System Engineer, Mascot, Infomix, and ASA CASE tools, and with the

TBGEN testing tool.

In all instances, the staff at Program Analysers were helpful and friendly and provided

quick resolution of encountered problems.

Instrumentation overhead. Full instrumentation of the Ada Lexical Generator for
statement, branch, and LCSAJ coverage gave a source code increase of nearly 100%. The
size of the instrumented executable program increased approximately 12%. The user can
limit the amount of instrumentation performed by requesting monitoring of only statement
coverage, or only statement and branch coverage. Since the user specifies the files which
are to be instrumented, instrumentation can be restricted to specific compilation units. It 0
cannot, however, be limited to specific program units within a compilation unit.

Ada restrictions. The LDRA Testbed supports full Ada. However, the documentation
lists the following constraints for version 4.8.01 of the Testbed:.

"* For static analysis and cross-referencing: (1) The use of generics may not be correctly
handled in some cases, (2) Analyses are limited to variables in the current module, (3)
Overloaded procedures may cause misleading messages about recursion, and (4)
Some combinations of literal procedure parameters are incorrectly analyzed.

"• Calls between procedures in package bodies are only handled if their declaratives
appear textually before use.

"* Incorrect branches are generated for certain nested select statements.
"* In the case of information flow analysis, strongly-defined variables may be miscate-

gorized in the presence of exception handlers.
"• The analysis may be incorrect for loops implementing recursive functions of degree 0

greater than two.
Problems encountered. Difficulties encountered in installing an earlier version of the

testbed have been resolved. LDRA Testbed performed as described in the documentation.

15-6

tl l l lll[m~mlS

PART II LDRA Testbed

15.3 Planned Additions

Currently under beta testing, dynamic data flow testing for Ada is expected to become

available in autumn 1992. Also under development are system-wide data flow analysis and

the assessment and reporting of reliability metrics.

15.4 Sample Outputs

Figures 15-1 through 15-19 provide sample outputs from LDRA Testbed.

15-7

LDRA Testbed PART II

MANAGEMENT SUM4ARY t*tetet.'

TESTBED VERSION : 4.8.01
FILE UNDER TEST adalex.dir 3/ lcompile. a 0
DATE OF ANALYSIS :Mon Oct 12 11:53:18 EDT 1992

STANDARDS VIOLATIONS IN STATIC ANALYSIS

LINE PENALTY
NUMBER VIOLATION MARK

28 1-0 package 1
82 USE clause 1
82 1-0 package 1
85 Exception declaration 1
88 Number Declaration 1
95 Predefined language environment name 'INTEGER' 1

688 Identical name in scope OTESTSYNCH' 1
694 Predefined language environment name 'INTEGER' 1
695 Identical name in another scope 01 1
695 Predefined language environment name INTEGER 1
744 Predefined language environment name 'FALSE' 1
752 Raise statement 1
782 Predefined language environment name 'TRUtE 1
797 Predefined language environment name *TRUE* 1

TOTAL PENALTY FROM STATIC ANALYSIS - 125
TOTAL NUMBER OF LINES IN PROGRAM - 868

SUMMARY OF EXCUTABLE BODIES

START NO OF
NAKE LINE LINES

LLFIUD 152 22
LLPRTSTRING 179. 10

LLPRTTOKIN 194 11
LBSKZPTOKU4 210 10
LLSKIPNODE 225 12
LLSKIPBOTH 244 13
LLFATAL 262 9
GETCRARACTER 278 14
CVTSTRING 307 10
JaIm-TOKEN 318 66

Figure 15-1. LDRA Testbed Management Summary for LL COMPILE 0

15-8

PART II LDRA Testbed

LLNEXTTOKEN 400 a

BUILDRIGHT 455 66
BUILDSELECT 527 8

E RAM 537 39

ERASE 587 14

MATCH 620 17

EXPAND 639 47

SYNCHRONIZE 697 62

TESTSYNCH 761 15
PARSE 778 75

LLMAIN 855 7

LL-CO4PILE 864 5

THERE ARE 1 UNREACHABLE LCSAJS
THE 4AXIMUM LCSAJ DENSITY IS 16 AT LINE 458

THERE ARE 1 SEOUENCES Or UNREACHABLE CODE

THE LONGEST IS 2 LINES AT LINE 167

THE TOTAL NUMBER OF UNREACHABLE LINES IS 10

THERE ARE 7 UNREACHABLE BRANCHES

1COMPLEXITY ANALYSIS PRODUCES TIE FOLLOWING TABLE OF RESULTS

EXEC. BASIC AVG. ORDER I MAX ORDER E
PROCEDURE LINES BLOCKS LEN. INTERY. INTERV. REDUC. MCCABE KNOTS MCCABE KNOTS

LL.COMPILE 27 1 27.00 1 1 YES 1 0 1 0
LLFIND 21 13 1.62 2 2 YES 5 14 4 6
LLPRTSTRING 10 5 2.00 2 2 YES 3 2 3 2
LLPRTTOlrJ 10 4 2.50 1 1 YES 2 1 1 0
LLSKIPTOKEN 10 1 10.00 1 1 YES 1 0 1 0

LLSKIPNODE 12 2 12.00 1 1 YES 1 0 1 0
LLSKIPBOTH 13 1 13.00 1 , 1 YES 1 0 1 0
LLrATAL 9 2 4.50 1 1 YES 1 0 1 0
GECRUARACTER 14 6 2.33 1 1 YES 3 2 1 0
MAKMTOKEN 68 17 4.00 1 1 YES 11 20 1 0

LIMEXTOM a 3 2.67 1 1 YES 2 0 1 0

LINAIN 14 1 14.00 1 1 YES 1 0 1 0
CVTSTRING 10 7 1.43 2 2 YES 3 2 1 0

EADGVAM 30 14 2.71 5 3 TES 6 5 1 0
PARSE 73 23 3.17 2 2 YES 11 11 1 0

BUILDRIGET 62 20 3.10 2 2 YES 10 30 8 26
BUILDSlL.CT I 4 2.00 2 2 YES 2 1 1 0
ERASE 11 6 1.83 2 2 YES 3 4 3 4
EXPAND 43 15 2.87 4 2 YES 7 2 1 0
TESTSYNCM 14 7 2.00 2 2 YES 3 2 1 0

Figure 15-1 continued: LDRA Testbed Management Summary for LLCOMPILE

15-9

LDRA Testbed PART II

MATCH 16 9 1.78 2 2 YES 4 9 4

SYNCHRONIZE 59 23 2.57 7 3 YES 9 11 4

TOTAL 550 183 3.01 23 3 YES 69 116 21 5

THE PROGRAM CONTAINS 22 PROCEDURES

ISTANDARDS VIOLATIONS IN COMPLEXITY ANALYSIS

PROCEDURE VIOLATION PENALTY

LLFIND CONTAINS ESSUeTIAL KNOTS I
LLPRTSTRING CONTAINS ESSINTIAL KNOTS 1
MAKE TOKEN MCCABE MEASURE GREATER THA 10 1
PARSE MCCABZ MEASURE GREATER THAN 10 1
sUILDRIGH! CONTAINS ESSIMNIAL KNOTS 1
ERASE CONTAINS ESSENTIAL KNOTS 1
MATCH CONTAINS ZSSENTIAL KNOTS 1
SYNCHRONIZE CONTAINS ESSENTIAL KNOTS 1
TOTAL PENALTY FROM COMPLEXITY ANALYSIS - S

iDATA FLOW ANALYSIS RESULTS

1 VARIABLES WERE DECLARED BUT NEVER USED
40 TYPE UR ANOMALIES FOUND
17 TYPE DU ANOMALIES FOUND
41 TYPE DD ANOMALIES POUND

IDTNAMIC COVERAGE ANALYSIS REPORT

PROFILES INCLUDED FOR THE FOLLOWING TEST DATA SETS

1) tetli.lex
2) sample.lex

DYNAMIC ANALYSIS WARNINGS 0
S MISSING LIER CODE SEOUIICE AND JUMP TRIPLES

6 MISSING URANCS

1STATWUNT EXECUTION HISTORY SUMhhARY

EECUTABLE MBER ZZCUTD TER I
STAT mqTS OLD N= TOTAL OLD NW TOTAL

LL CoGPIE 27 27 27 27 1.00 1.00 1.00
LLFIND 17 16 17 17 0.94 1.00 1.00
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTT0KU 10 0 0 0 0.00 0.00 0.00

ILSKIP!OKXl 10 0 0 0 0.00 0.00 0.00

Figure 15-1 continued: LDRA Testbed Management Summary for LLCOMPILE

15-10

I I I0

PART I LDRA Testbed

LLSKIPNODE 12 0 0 0 0.00 0.00 0.00

LLSKIPBOTH 13 0 0 0 0.00 0.00 0.00

LLFATAL a 0 0 0 0.00 0.00 0.00

GET CHARACTER 14 0 0 0 0.00 0.00 0.00

HAKE-TOKEN 67 0 0 0 0.00 0.00 0.00

LLNEJTTOKEN a 8 8 8 1.00 1.00 1.00

LLHAIN 14 14 14 14 1.00 1.00 1.00

CVTSTRING 9 0 0 0 0.00 0.00 0,00

READGRAM 38 36 38 38 1.00 1.00 1.00

PARSE 73 56 56 56 0.77 0.77 0.77

DUILDRIGHT 62 54 .54 54 0.87 0.87 0.87
BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 11 1.00 1.00 1.00
EXPAND 43 38 38 38 0.88 0.88 0.88
TESTSYNCH 14 0 0 0 0.00 0.00 0.00

MATCH 15 13 13 13 0.87 0.87 0.87
SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00

TOTAL 540 283 284 284 0.52 0.53 0.53

SUB-CONDITIONS SDUMMARY

NUmER EXCUTED TER CON
SUB-CONDITIONS OLD NEW TOTAL OLD NEW TOTAL

LL-CONPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFNmD PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS

LLSKIPNODE PROCEDURE CONTAINS NO SUD-CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB-CONDITIONS
GETCHARACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
MAXJ_TO0EN PROCEDURE CONTAINS NO SUB-CONDITIONS

BUILDRIGHT PROCEDURE CONTAINS NO SUB-CONDITIONS
BUILDOSLECT PROCEDURE CONTAINS NO SUB-CONDITIONS
ERASE PROCEDURE CONTAINS NO SUB-CONDITIONS
EIPAND 8 8 S 8 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS

MATCH 4 4 4 4 1.00 1.00 1.00
SYNCHRONIZE 12 0 0 0 0.00 0.00 0.00

TOTAL 24 12 22 12 0.50 0.50 0.50

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-11

LDRA Testbed PART II

IBRANCH EXECUTION HISTORY SUM4ARY

NUMBER EXECUTED TER 2
BRANCHES OLD NEW TOTAL OLD NEW TOTAL

LLCOMPILE 13 13 13 13 1.00 1.00 1.00
LLFI•D 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 0 0 0.00 0.00 0.00

LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00
LLSKIPTOKE(2 0 0 0 0.00 0.00 0.00

LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTN 3 0 0 0 0.00 0.00 0.00
LLrFATAL 2 0 0 0 0.00 0.00 0.00
GETý_CHAACThR 7 0 0 0 0.00 0.00 0.00
NAZ?_TOKE 31 0 0 0 0.00 0.00 0.00

LLNECTTOREW 5 4 4 4 0.80 0.80 0.80
LIZAIN 5 5 5 5 1.00 1.00 1.00
CVTSTRING 7 0 0 0 0.00 0.00 0.00

R3.DGRAK 20 20 20 20 1.00 1.00 1.00
PARSE 39 25 25 25 0.64 0.64 0.64

BUILDRIGHT 26 22 22 22 0.05 0.85 0.35
BUILDSELECT 4 4 4 4 1.00 1.00 1.00

WISE 7 7 7 7 1.00 1.00 1.00
WAND 1i 15 15 15 0.83 0.83 0.63

TSTSYNCH 11 0 0 0 0.00 0.00 0.00

MATCH 11 7 7 7 0.64 0.64 0.64 0
STDU NISZZE 26 0 0 0 0.00 0.00 0.00

TOTAL 292 133 134 134 0.46 0.46 0.46

1LCSA.T EXECUTION HISTORY SUDMARY

NUIMBR EXECUTED TER 3
LCSL78 OLD NEW TOTAL OLD NEW TOTAL

LLTCGOSILZ 13 13 13 13 1.00 1.00 1.00

LLFIXD 34 10 11 11 0.29 0.32 0.32
LLP12STRING 10 0 0 0 0.00 0.00 0.00

LLPRTTOKMN 13 0 0 0 0.00 0.00 0.00
LLSIZIPTOK3 2 0 0 0 0.00 0.00 0.00

Figure 15-1 continued: LDRA Testbed Management Summary for LL._COMPILE

15-12

PART II LORA Testbed

LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00
GE CHARKCT!ER 6 0 0 0 0.00 0.00 0.00
MAKE_!TOEN 33 0 0 0 0.00 0.00 0.00

LLNEXZTOKrE 7 3 3 3 0.43 0.43 0.43
LLMAKN 5 5 5 5 1.00 1.00 1.00
CVT'_STRING 9 0 0 0 0.00 0.00 0.00
READGRA•I 25 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68
BUILDRIGHT 32 24 24 24 0.75 0.75 0.75
BUILDSELECT 5 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TSTTYNCH 12 0 0 0 0.00 0.00 0.00

MATCH .2 6 6 6 0.50 0.50 0.50
SYNCHRONIZ 38 0 0 0 0.00 0.00 0.00

TOTAL 326 130 131 131 0.40 0.40 0.40

1SUt4ARY 0 EFFECT OF CURRET TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAM TER 1 TER 2 TER 3

LLCOMPZLE 1.00 1.00 1.00
LLII1D Inoreaged Incrased Inoeased
,LPRTST!RIG No Change No Change No Change

LLPRTTOK3W No Change No Change No Change
LLSKXPOMKW No Change No Change No Change
LLSKIPNODE No Change No Change No Change
LLSKIPBO'1 No Change No Change No Change
LLVATAL No Change No Change No Change
GEZTCHRACT'R No Change No Change No Change
MAKETOKEO No Change No Change No Change
LLNZXTOKlN 1.00 No Change No Change
LZMI.N 1.00 1.00 1.00
CVT_STRING No Change No Change No Change
READGRAM 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDEIGHT No Change No Change No Change
DUILDSELZOT 1.00 1.00 No Change
ZRAJE 1.00 1.00 No Change
EXPAND No Change No Change No Change
'.s8111CR No Change No Change so Change
MATCH No Change No Change No Change
8!NCHRONZZE No Change No Change No Change

Figure 15-1 continued: LDRA Testbed Management Summary for LLCOMPILE

15-13

LDRA Testbed PART 11

hov LM= 1 Copil

Reslt podce o: anOc 1 1:5:35192 dS AA C~tdVaoo4.,0

Pkiadat:MonOct 2 1:29.4 IMC LJLA.199

Staic alltre ofprgram allcosl0

Figure 15-2. LDRA Tetbed Static Call Tree of LL..COMPILE

15-14

PART II LDRA Testbed

emb poduced am Ma Oct 12 12:17:01 1992 I Uin. ADA Tesftd Vaoim 4.01

Pftdab: Ma Oct 12 123&OS 1•9 2 LD..A. 1992

DyGauj call tree ot pzogra : U1_cospils

Fiue1-.LDAT#. yamc(alTe of I..COMI

S.15 .

* CCC *S C . . .
S SiC

S e * l *
C m C e 4.

: e .C o

S C * * 4
S * * S

4 5C

45, ; . C
• ,,, ., S ..

*•, : . *:5~-. '"--
• ' S. C ,C

*• SC *

Figue 153. IRA Tstb~ Dynuic all reeofLOMPL

15-15. ...- o

LDRA Testbed PART II

PROCEDURE CALL INFORMATION

TIE NAMA PROGRAM
BETWEEN LINES 31 AND 668
LLCOMPILE

CALLS THE IOLLOWING PROCEDURES
UAK&IN

PROCEDURE •
LLPIND
BETWEN LINES 146 AND 174

DOES NOT CALL ANY IZNTERNAL PROCEDURES

IS CALLED BY TE rOOLLOWING PROCEDURES
MIxkETOW=
PARSE

PROCEDURE
LLPR•STRING
BETWEEN LNS 176 AND 183

DOES NOT CALL ANT InmMAL PROCURES

IS CALLED BY T22 FOLLOWING PROCEDURES
LLPFRTOKW
LLKi•PNODZ
LLSKIPUOTU

S!NCRROMIZE

TIM FOLLOWING VARIABLES WERE DECLADZD BUT REM USED
VARIABLE DECLARED ON LINE

TANLECINDIX 453

Figure 15-4. LDRA Teatbed Data Flow Analysis of IL_.COMPILE

15-16

PART 11 LDRA Testbed

TYPE UR AN~OMALIES
VARIABLE UNDEFINz axrERENCZ

'GLWDAL' S!ANDARDERROR
180 180

'GLOBAL # SADARDEZRROR
200 200

RNSARRtAY 435 859 IN PROCEDURE PARSE
'GLODAL' LLTABLESIZE

136 136
LLS7MBOL!ABLE

136 866 IN PROCEDURE LLMAIN

LLEO!OKB 132 666 IN PROCEDURE LLMAIM
LLCUR!OI. PRINYVALUE

135 866 IN PROCEDURE LLMAIN
LLCURTOK. TABLEINDEK

135 866 IN PROCEDURE LLMAIN
LLCURTOK.LXNEMUIER

135 866 IN PROCEDURE LLMAIN
LWURtTOK.ATTRIV1'fl

135 866 IN PROCEDURE LLI4&IN

T!EDU ANM4ALIES
VARIABLE WuINE UNDEVInM

CRBLDCOUNT 457 520
1 529 532
LOCOFrtIE 738 852
PRODUCTIONfS 857 IN PROCEDURE READGRAZ($61
INUARRAY 857 ZN PROCEDURE READGIAN 861
THXSRES 857 IN PROCEURE READGRAM. 361
LLS!ACK.DAT& 866 IN PROCEDURE LLMAXIN 868
LLSTAhCEATTUIUTE

366 IN PROCEDURE LU4RIN 666
LLSTACK. PARENT

666 ZN PROCEDURE ZLLAIN 66e
LLSTACK .TOP 866 ZN PROCEDURE LIMA=N 868
LLSTACK. LAB=CELD

666 IN PROCEDURE LLMaZN 086

366 IN PROCEDURE LIIW.IN 666
LLCUR!OK. TABLEIWDE

866 IN PROCEURE LLHAXN 363
LLCUR!OK. ?RZNTYALU!

366 IN PROCEDURE LLNAIN 666
LLSDIpTR 666 ZN PROCEDURE LIWJrN M6
LLLO)CmOS 366 IN PROCEDURE LIIIAIN 868
'LLADVANCZ 666 IN PROCEDURE LLMAIN66

Figure 15-4 continued: LDRA Testbed Data Flow Analysis of LICOMPILE

15-17

LDRA Testbed PART II

TYPE DD ANOMALIES
VARIABLE DEFINE REDEFINE

LLTOP 598 594
LLSTACK. LASTCHILD

669 671
LLSTACK.TOP 669 671

LLSTACK ATTRIBUTE
784 785

LLSTACK.DATA 784 785

LLSTACK, LSTCHILD
785 786

LLSTACK.TOP 785 786
LLSTACK. PARWT795 786

LLSTACK. ATTRIBUTE
785 786

LLSTACK.DATA 785 786
LLTOP 627 IN PROCEDURE EXPAND 841 IN PROCEDURE ERASE
LLADVANCE 797 827 IN PROCEDURE EXPAND
LLADVANCE 841 IN PROCEDURE ERASE 797
LL•DVANCE 797 821 IN PROCEDURE TESTSYNCH

PROCEDURE PARAMETER ANALYSIS

PROCEDURE LLFIND
PARAMETER ITEM IS SOMETIMES RZPERIZCED INSIDE THE PROCEDURE
PARAMETER WHICH IS SCUTZINES REFERMCE INSIDE THE PROCEDURE

PROCEDURE LLPRTSTRING
PARAMETER STM IS AWAYS REFERMCED INSIDE THE PROCEDURE

PROCEDURE LLPRTTOKEN
DOES NOT NAVE ANT PAVRANETRS

PROCEDURE GET CEAEACT
PARAMITE noS IS ALWAYS DEFINED INSIDE THE PROCEDURE
PARAMETER NEXT is SOMEIt•I RZFERE

AND DEFINED INSIDE THE PROCEDURE
PARAMETER MO�RENu *t IS NOT USED IN TEE PROCEDURE *"t

Figure 15-4 continued: LDRA Teetbed Data Flow Analysis of LLCOMPILE

15-18

PART II LDRA Testbed

Path Analysis

1 paths in procedure LLCOMPILE

9 paths in procedure LLFIND
4 paths in prooedure LLPRTSTRING
2 paths in procedure LLPRTTOKEN
1 paths in procedure LLSXIPTOKEN
1 paths in procedure LLSKIPNODE

1 paths in procedure LLSKIPBOTH
1 paths in prooedure LLFATAL
3 paths in procedure GETCHARACTER

35 paths in procedure MAKE TOKEN
2 paths in procedure LLNEXTTOKEN
1 paths in procedure LLMAIN
3 paths in procedure CVTSTRING

20 paths in procedure READGRAM

34 paths in procedure PARSE
63 paths in procedure BUILDRIGHT

2 paths in prooedure BUILDSELECT
4 paths in procedure ERASE

14 paths in procedure EXPAND
3 paths in procedure TESTSYNCH
6 paths in procedure MATCH

51 paths in procedure SYNCHRONIZE

Information Flow - Variable Dependency Results

In Procedure LLIIND

Strongly defined variableat

Strongly Weakly
Variable Dependent , Dependent

NIGH 'GLOBAL' LLTAULESIZE

LOW 'GLOBAL" LLTABLESIZE

Weakly defined variables:

Strongly Weakly
Variable Dependent Dependent

MIDPOINT 'GLOBAL'LLTABLESIZZ

Figure 15-5. LDRA Testbed Information Flow Analysis for LLFIND

15-19

LDRA Testbed PART II

STRUCTURED PROGRAMING VERIFICATION WILL USE THE FOLLOWING 7 STRUCTURES

SIMPLE COLLAPSE
REPEAT LOOP
CASE
WILE DO
IF THEN
IF THE(ELSE
FOR LOOP

1

t* COMPLEXITY ANALYSIS FOR

*0 tPROCEDURE LLFIND *

LIST OF KNOTS

FROM TO FROM TO DONN-DOWN P-DOW UP-UP

155 172 163 069 T
155 172 165 669 T
155 172 171 155
157 160 159 170 T
159 170 163 069 T
159 170 165 069 T
161 169 163 369 T
161 169 165 069 T
161 169 167 170 T
162 165 163 669 T
162 165 164 166 T
163 869 171 155 T
164 166 16S5 69 T
165 369 171 155 T 0

TOTAL NUMBER OF KNOTS - 14

NUMBER OF DOW-DONN KNOTS - 11
VNUMiR OF UP-DOWN KNOTS - 3

UNZER OFr UP-UP KNOTS a 0

Figure 15-6. LDRA Testbed Complexity Analysis for LLFIND

15-20

S - -- - -- -- • m m m a m m t0

PART II LDRA Testbed

BASIC BLOCK DISPLAY

BRANCH FROM LINE 163 JUMPS OUT OF PROCEDURE

THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,

IMMDIATELY AFTER THE END OF THE PROCEDURE

BRANCH FROM LINE 165 JUMPS OUT OF PROCEDURE
THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,
IMM=IATELY AFTER THE END OF THE PROCEDURE

LINE
NUMBER STATEMENT

146 function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return 1
147 INTEGER in 1

150 LOW, MIDPOINT, HIGH: INTEGER; 1

151 1

152 begin 1
153 LOW : 1; 1
154 HIGH : LLTABLESIZE + 1; 1

155 while LOW /- HIGH loop 2

156 MIDPOINT : (HIGH + LOW) / 2; 3
157 if ITEM (LLSYMBOLTABLE(MIDPOINT).KEY then 3

158 HIGH : MIDPOINT; 4
159 elsif 4

160 ITEM - LLSYMBOLTABLE(MIDPOINT).KEY 5

161 then 5

162 if LLSYMBOLTABLE(MIDPOINT) .KIND - WHICH then 6

163 return(MIDPOINT)g 7

164 also S

165 return(0); 9

166 end if, 10
167 also 10
160 - ITEM LLSMBOLTABLE(MIDPOINT).KEY 10

169 LOW s- MIDPOINT + 1; 11

170 end if, 12
171 end loop; 12

172 return(0); - item is not in table 13

173 end LLFIND; 13

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-21

LDRA Testbed PART II 1

AVERAGE LENGTH OF BASIC BLOCK - 1.62 LINES

BLOCK 8 IS UNREACHABLE - REMOVE FROM FURTHER CONSIDERATION
BLOCK 10 IS UNREACHABLE - REMOVE FROM FURTHER CONSIDERATION

PROCEDURE ENTRY AT BASIC BLOCK I
PROCEDURE EXIT AT BASIC BLOCK 14

KNOTS

- -- ------------ -

FROM TO FROM TO FROM TO FROM TO
BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE

2... f3 ----- 14-1 --5 1 163-- 1 74 - - ----

2 13 7 14 155 172 163 174
2 13 9 14 155 172 165 174

2 13 12 2 155 172 171 155
3 5 4 12 157 160 159 170
4 12 7 14 159 170 163 174
4 12 9 14 159 170 165 174
5 11 7 14 161 169 163 174
5 11 9 14 161 169 165 174
6 9 7 14 162 165 163 174
7 14 12 2 163 174 171 155
9 14 12 2 165 174 171 155

NUMBER OF BLOCK CONNECTIONS - 15
NEMBER OF BLOCKS - 12 •

CO•PLEXITY MEASURE OF MCCABE - 5

NUMBER OF KNOTS - 11

lINTERVAL ANALYSIS

INTERVALS OF ORDER 1

HEADER BLOCK I
ITzERVAL BLOCKS 1 0

BH1ADER BLOCK 2
INTRVAL BLOCKS 2 3 13 4 5 6 11 7 9 12 14

NUMBER OF INTERVALS - 2

"AVERAGE LENGTH OF INTERVAL - 6.00 BLOCKS

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND •

15-22

m 0

PART II LDRA Testbed

INTERVALS OF ORDER 2

HEADER BLOCK 1
INTERVAL BLOCKS 1 2

NVtNER OF INTERVALS - 1
AVERAGE LENCTR 1O INTERVAL - 2.00 BLOCKS

PROCEDURE REDUCIBLE IN THE INTERVAL SENSE

1STRUCTURED PROGRAMING VERIFICATION

CONNECTION DISPLAY
BLOCK I CONNECTS TO BLOCKS 2
BLOCK 2 COUNECTS TO BLOCKS 3 13

BLOCK 3 CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 12
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 COHNNCTS TO BLOCKS 7 9
BLOCK 7 COKNNTS TO BLOCKS 14
BLOCK 9 COMNECTS TO BLOCKS 14
BLOCK 11 CONNECTS TO BLOCKS 12
BLOCK 12 CONNECTS TO BLOCKS 2
BLOCK 13 CONNECTS TO BLOCKS 14

TEZ LINES O CODE CONTAINED IN EACK BLOCK AUE
BLOCK 1 CONTAINS LINES 146 TO 154 - BLOCK I
BLOCK 2 CONTAINS LINES 155 TO 155 - BLOCK 2
BLOCK 3 CONTAINS LINES 156 TO 157 - BLOCK 3
BLOCK 4 CONTAINS LINES 158 TO 159 - BLOCK 4
BLOCK 5 CONTAINS LINES 160 TO 161 - BLOCK 5
BLOCK 6 CONTAINS LINES 162 TO 162 - BLOCK 6
BLOCK 7 CONTAINS LINES 163 TO 163 r BLOCK 7
BLOCK 9 CONTAINS LIMES 165 TO 165 - BLOCK 9
91C 11 CONTAINS LINES 169 TO 169 - BLOCK 11
BLOCK 12 CONTAINS LINES 170 TO 171 - BLOCK 12
BLOCK 13 CONTAINS LINES 172 TO 173 - BLOCK 13
BLOCK 14 CONTAINS LINES 174 TO 174 - BLOCK 14

- STRUCTURE) CODE FOUND -

IF ?am ELSE room OW BLOCKS 6 7 9 14
THE VOLLOWWIN BLO0CKS ARE MRGED 6 7 9

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-23

LDRA Testbed PART II f

-- CONNECTION DISPLAY --

BLOCK 1 CONNECTS TO BLOCKS 2
BLOCK 2 CONNECTS TO BLOCKS 3 13
BLOCK 3 CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 12
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 CONNECTS TO BLOCKS 14
BLOCK 11 CONNECTS TO BLOCKS 12
BLOCK 12 CONNECTS TO BLOCKS 2
BLOCK 13 CONNECTS TO BLOCKS 14

TUE LINES OF CODE CONTAINED IN EACH BLOCK ARE
BLOCK 1 CONTAINS LINES 146 TO 154 - BLOCK 1
BLOCK 2 CONTAINS LINES 155 TO 155 - BLOCK 2
BLOCK 3 CONTAINS LINES 156 TO 157 - BLOCK 3 0
BLOCK 4 CONTAINS LINES 158 TO 159 - BLOCK 4
BLOCK 5 CONTAINS LINES 160 TO 161 - BLOCK 5
BLOCK 6 CONTAINS LINES 162 TO 163 - BLOCKS 6 TO 7

AND 165 TO 165 - BLOCK 9
BLOCK 11 CONTAINS LINES 169 TO 169 - BLOCK 11
BLOCK 12 CONTAINS LINES 170 TO 171 - BLOCK 12
BLOCK 13 CONTAINS LINES 172 TO 173 - BLOCK 13
BLOCK 14 CONTAINS LINES 174 TO 174 - BLOCK 14

NO rURTHER STRUCTURE FOUND

KNOTS

FRO1(TO FROM TO FROM TO FROM TO
BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE

2 13 6 14 155 172 162 174
2 13 12 2 155 172 171 155
3 5 4 12 157 160 159 170
4 12 6 14 159 170 162 174
5 11 6 14 161 169 162 174
6 14 12 2 162 174 171 155

ESSMITIAL KNOTS - 6

ESSEN'TAL COMPLEXITY Of MCCABE 4

PROCEDURE NOT STRUCTURED

Figure15-6 continued: LDRA Testbed Complexity Analysis for LLFIND 0

15-24

S

PART II LDRA Testbed

-,tom D . ,

Results roduced o: o dale available " UAnW. ADA Tesibed Version 4.8.01

Print date: Mon Oct 12 12:24:22 1992 () L.D.LA. 1992

System View NcCabe's Measure

Figure 15-7. LDRA Testbed System View McCabe's Complexity Measure

15-25

LDRA Testbed PART 11

Systam View f~tas

Figre 5-. LRATe~ed ysem ie Knts omlextyMeaur

15-20

PART If IDRA Testbed

liviat Diagrami
a

It

L1

II

U" 1 am §P Val

A laha lz.wmt (WWI.1 colors".02 1."0 0.40

0 Lovage O dme. aseaia 6666 o11 Is a le0bi .00 1.0 2A .36
* legl .5bwo lfessgal sem la Imagns for 0 44 52

V 80606 t.Il aabs Uaaaha pe~a 1.00 3.00 1.91
a lga tt~l wae las L P~mn 63 1 49 21

* AmoSI Db Of MMA LAM a PSGAMCO 1.00 1.00 1.2?
2 Peaul wmb of saw La kavng - 4) 22 1n6 1us

he Aemag moobm ma.660. Ia a pae ~ 1.00 10.00 6406
U£ legal NNeo MaSAl LaW Iega 1 S 10 o

L. Swomm" Muso latnafl gas""6 am a poe40ma 1.00 3.0 1."4
To 161. U.3 IkkorwYSItl s1.11 lesgow 1 4 3" Nom avags * 40 leiM I Ukteerl ia a Ieim .00 1.00 2.00

* Umbe ae - I I Ztutonal La, pogm to) 22 18 4
, Aom~s, mobo 4"at s UaaI " 62gb a pooesag 1. 1 a.6 6.2

o wh ýe at. .04 ask, is woSam 1 low0 m1
. AVOWga IMNO 69 L.4.. at *01. LA a Seak .0 "0.00 21.00

O 11o 1e4mo seas a m . s 660 Li aft is) SIG 1100 nSo

I sugbo of Mate~m ft~La In .0m a 100 12

Figure 15-9. LDRA Testbed Kiviat Graph for LLFIND

15-27

LDRA Testbed PART II 1

DETERMINATION OF LINEAR CODE SEOU]NCE AND JUMP TRIPLES 0

START FINISH LINE
LABEL LABEL NUMBER STATEMENT

FINISH 145 1

START 146 function LLFIND(ITEM: LLSTRINGS; WHICH- LLSTTLE) return 3
147 INTEGER is 3
148 - Find item in symbol table - return index or 0 if not found
149 - Assumes symbol table is sorted in ascending order.3

150 LOW, MIDPOINT, HIGH: INTEGER, 3
151 3 •

152 begin 3
153 LOW:- 1, 3
154 HIGH :- LLTABLESIZE + 1: 3

START FINISH 155 while LOW /- HIGH loop 6
156 MIDPOINT :- (HIGH + LOW) / 2: 4

FINISH 157 if ITEM (LLSTMBOLTABLE(MIDPOINT) .KEY then 4
159 HIGH :- MIDPOINT; 2

FINISH 159 elsif 2

START 160 ITEM - LLSYMBOLTABLE(MIDPOINT). KEY 10
FINISH 161 then 10
FINISH 162 if LLSYMBOLTABLE(MIDPOINT) .KIND - wHICH then 9
rINISH 163 return(MIDPOINT)a 6

164 else 0 UNREAM

START FINISH 165 return(0)8

166 end If, 0 UNtEACH
167 alse 0 UKtEhA

STAR! 169 - ITEM LLSYMBOLTABLE(MIDPOINT).KrE 1
169 LOW s- MIDPOINT + 1, 1

START 170 end if, 2
FINISH 171 end loop; 2

START FINISH 172 return(0): - item is not in table a

173 end LLFINDg 0 UNtEACE

START 174 1
FINISH 175 1

START 176 procediure LLP3TSTRING(sT: LLSThIWS) is 3

Figure 15-10. LDRA Tssbed LCSAJ Analysis for LL.COMPILE

15-28

PART II LDRA Testbed

1LINZA CODE SEQUENCE AND JIMP TRIPLES

START FINISH JUM4P TO

LINE LINE LIME

31 145 174
146 155 172

146 157 160

146 159 170

166 167 170 UNREACA3 tt*'

168 171 155
170 171 155

172 172 327

172 172 332

172 172 335

172 172 341

172 172 344

172 172 350

172 172 790

172 172 793

174 175 189

176 e81 187

176 184 187

176 186 181

061 861 868

862 867 413

868 868 -1

NUNDER OF •CSA3S IN PROGR M 327 (1 UINREACHAB3LE)

BRANCH FION 164 TO 166 IS UNREACUHALE

NUAN FROM 167 TO 170 IS UN3ZACHABLE

RANCIH RON 270 TO 666 IS UNEZACRABLE

BRANCH FROM 270 TO 771 IS UNRrACHABLI

BRANCE ?RON 270 TO 851 IS NMZACRlA•L3

BRANCH FROM 753 TO 756 18 UMURACHASL3

BRANCH IRON 758 TO 775 IS UNREACHABLE

Figure 15-10 continued: LDRA Testbed LCSAJ Analysis for LLCOMPILE

15-29

LDRA Testbed PART II

ATTRIBUTE CODES 0

L LOCAL VARIABLE
G GLOBAL VARIABLE

P PARAMETER
LG LOCAL VARIABLE USED AS GLOBAL IN OTHER PROCEDURE

PROCEDURE LLFIND
START LINE 146 END LINE 174

CALLS NO PROCEDURES

IS CALLED BY THE FOLLOWING PROCEDURES
NAME CALLED ON LINE

MAKE.TOKEN 325 330 333 339 342 348
PARSE 788 791

VARIABLE USAGE INFORMATION

NAME ATTRIB OCCURS ON LINE

'GLOBAL' LLTABLESIZE 0
G 154

HIGH L 150 154 155 156 158
ITEM P 146 257 160
LLSYINOLTABLE

a 157 160 162
LOW L 150 153 155 156 169

MIDPOINT L 150 156 157 258 160 162 163 169

WHICK P 146 162

MANAGEMENT SUN4ARY

THE FOLLOWING VARIABLES HAVE ONLT Mi OCC!"MiDCE
NAME OCCURS On LINE

LLCURTOK.TABIUINDER 405

'GLOBAL' LLSTRINGS 308

'GLOBAL' INVILE 539
'GLO3AL'LSENDGT 542

LLCURLOK ATTRIBUTE 804
TADZJEMDX 453
I 529
'GLOBAL' STAND=ARDEmoR 661
LLCURTOK. TABLEINDEX 625
LLCURTOK. PINTYALUK 724

Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND

15-30

PART II LDRA Testbed

DYNAMIC COVERAGE ANALYSIS REPORT

PRODUCED BY LDRA SOFTWARE TESTBED: DYNAMIC COVERAGE ANALYSZR

DYNAMIC COVERAGE ANALYSIS REPORT OPTIONS SELECTED

PROCEDURE BY PROCEDURE PRINTOUT FOR ALL PROCEDURES

TRACING OPTIONS SELECTED

NO TRACE REOUESTED

PROFILES INCLUDED FOR THE FOLLOWING TEST DATA SETS

1) teatilex
2) sample.lex

THE* ~ FOLLOWING PROCEDURE(S) WERE DNTERED ...
tttt UNEXPECTEDLY. USUAL CAUSE IS-
tttet A) HISSING LE•EL trer

"i"ttt B) ANALYSIS OF MODULE WITH NO MASTER ttttt
"ttTH•IS WAY CAUSE LOCAL TRACE AND STATZ8IET**It
tttt2I CU!ION PROFILE TO BE INCORRECT

CALL PROCEDURE (MISSING LVVEL) LLFIND

RETURING FROM LLFIND

CAhL PROCEDURE (MISSING LEVE) LLFInD.
RETURNING nom1 LLFIND

MIUSSING LINEAR CODE SNQUENCE AND JUMP TRIPLES

START FIn JUmU

LINE LINE LINE COUNT

160 163 393 130
160 163 399 90

165 165 396 2

iNiSSI BRANCHES

FR01 TO
LINE LIN COUNT

163 398 130
163 399 90
165 396 2

Figure 15-12. LDRA Testbed Dynamic Analysis for LL COMPILE

15-31

LDRA Testbed PART II 1

a* DYNAMIC ANALYSIS FOR
a. PROCEDURE LLIPND

1STATEIT WECUTMION PROFILE

LINE

NUMBER hTIT

146 function LLFIMD(IT/M4s LLSTRINGS; WHICH: LLSTYLE) return
147 INTEGER is
146 - Find item in symbol table - return index or 0 if not found.
149 - Asmmes symbol table is sorted in ascending order.
150 LOW, MIDPOINT, HIGH: INTEGER;

151
152 begin
153 LOW :- 1;
154 HIGH -- LLTABLESIZZ + 1;
155 while LOW /- HIGH loop
156 MIDPOINT : (SGH + LOW) / 2;
157 if ITEM (..LLSMOLABLE(MIDPOINT). KEY then
"159 NIGH I- MIDPOIN2;

159 elsif
160 ITEM - LLSDSOL-ABLE(MIDPOINT).KEY
161 then

162 if (MIDPOINT) .KIND - WHICH then
163 return(MPOINT);
164 else
165 return(0);
166 end If;

167 else
166 IT L24 srH3oLThBLk(mZDPon4T) .=KE

169 O W MIDPOINT + 1;
170 ead If;
171 eand loop:
172 return(0); - i tem is not in table
173 end LLFINDI

OLD NEW
SUIM1RY COUNT COUNT TOTAL

NUMBER OF EECUCTABLE LINES 17 17 17
NUMBER EXECUTED 16 17 17
MOMN NOT EnCUI'ED) 1 0 0

TEST IF••ECTIVE NSS RATIO 1 0.94 1.00 1.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LLCOMPILE

15-32

PART II LDRA Testbed

1BRANCH EXECUTION PROFILE

FROM TO OLD NEW

LINE LINE COUNT COUNT TOTAL

155 156 898 1422 2320
155 172 63 88 151
157 158 429 646 1075
157 160 469 776 1245

159 170 429 646 1075
161 162 135 224 359
161 168 334 552 886

162 163 135 222 357

162 165 0 "ct 2 2
163 327 0 t* n 0 eat. 0 tit*

1 63 332 0 t n 0 e " t 0 ri *e

1 6 3 3 3 5 0 t i lt 0 i n 0 t t

163 341 0 "et 0 "t 0 "t

163 344 0 t t 0 * " 0 tre

1 6 3 3 5 0 0 t i n t 0 " t 0 ' l i t

163 790 1 1 2
163 793 1 1 2
1 6 5 3 2 7 0 t t t 0 t i t 0 t i l l

165 332 0 t t 0 ti 0 t

165 335 0 " tt 0 t t 0 " t

165 341 0 "it 0 t t 0 * i* t

1 65 3 4 4 0 a t m t 0 ti 0 t t

165 350 0 " i 0 t t 0 *see

165 790 0 "e' 0 'i'c 0 'ec'

165 793 0 tuce 0 *tt 0 **it

171 155 763 1196 1961

172 327 0 " e 0 tic t 0 " "

1 7 2 3 3 2 0 t t 0 t t 0 t i l t

172 335 0 ties 0 tc 0 tilt
172 341 0 "cc 0 'cct 0 cc"
172 344 0 tst 0 tit 0 te~c
172 350 0 'elc 0 t" 0 cc"
172 790 0 'cc' 0 etc. 0 'eec

172 793 0 ti ' 0 'cc r 0 tint

OLD NEW
SLTUIWRT COUNT COUNT TOTAL

NUMER OF BRANHES 34 34 34
NUBR EXECUTED 11 12 12
NUNBER NOT CUTED 23 22 22

TEST EFFECTIVENSS RATIO 2 0.32 0.35 0.35

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-33

LDRA Testbed PART II

THE FOLLOWING BRANCHES HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

(163, 327) (163, 332) (163, 335) (163, 341) (163, 344) (163, 350) (165, 2
(165, 332) (165, 335) (165, 341) (165, 344) (165, 350) (165, 790) (165, 7
(172, 327) (172, 332) (172, 335) (172, 341) (172, 344) (172, 350) (172, 7
(172, 793)

MISSING BRANCHES

FROM TO
LINE LINE COUNT

163 398 130
163 399 90
165 398 2

172 398 88

iLIn CODE SZQU•NCZ AND 3n EXECUTION PROFILE

START FINISH JUMOTO OLD NEW
LINE LINE LINE COUNT COUNT TOTAL 0

146 155 172 0 et 0 *ttt 0 ***0

155 155 172 63 68 151
146 157 160 22 38 60
155 157 160 447 738 1185
146 159 170 176 274 450
155 159 170 253 372 625
160 161 168 334 552 836
160 162 165 0"" 2 2
160 163 327 0 "e 0 "ti 0 'a"
160 163 332 0 tt 0 til 0 ttt

160 163 335 0 'il 0 tt 0 "i'
160 163 341 0 t~e 0 til 0 "a'
160 163 344 0 'ai 0 t0 O
160 163 350 0 'a" 0 "'a 0 aaaa 0
160 163 790 1 1 2
160 163 793 1 1 2
165 165 327 0 'a" 0 "i' 0 "a'
165 165 332 0 "a' 0 "" 0 'a"

165 165 335 0 "tt 0 *see 0 tt

165 165 341 0 tel 0 'at 0 0 a'
165 165 344 0 "t 0 "'i 0 'a"
165 165 350 0 'i" 0 tt 0 'a"
165 165 790 0 ttt 0 tia 0 ti"
165 165 793 0 "ia 0 tilt 0 tilt

Figure 15-12 continued: LDRA Teatbed Dynamic Analysis for LL__COMPILE

15-34

- PART II LDRA Testbed

- 168 171 155 334 552 886
170 171 155 429 646 1075
172 172 327 0 "'i 0 'at 0 ttt

172 172 332 0 **mt 0 "" 0 ***

172 172 335 0 "a' 0 "" 0 a"'

172 172 341 0 "" 0 "a' 0 **t

172 172 344 0 tt 0 a"t 0 t"

* 172 172 350 0 tt 0 att 0 ttt

172 172 790 0 ttt 0 ttt 0 'tt

172 172 793 0 tri 0 tat 0 tttt

--- ------------ -------- ---------

OLD NEW
SUMMARY COUNT COUNT TOTAL

NUMBER OF LCSAJS 34 34 34

*NUMBER EXECUTED 10 11 11

NUMBER NOT EXECUTED 24 23 23

TEST EFFECTIVENESS RATIO 3 0.29 0.32 0.32

THE FOLLOWING LCSAJS HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

(146, 155, 172) (160, 163, 327) (160, 163, 332) (160, 163, 335) (160, 163,
• (160, 163, 344) (160, 163, 350) (165, 165, 327) (165, 165, 332) (165, 165,

(165, 165, 341) (165, 165, 344) (165, 165, 350) (165, 165, 790) (165, 165,
(172, 172, 327) (172, 172, 332) (172, 172, 335) (172, 172, 341) (172, 172,

(172, 172, 350) (172, 172, 790) (172, 172, 793)

MISSING LINEAR CODE SEOUENCE AND JUMP TRIPLES

START FINISH JUMPTO
LINE LINE LINE COUNT

160 163 398 130
160 163 399 90
165 165 398 2
172 172 398 83

iSTATzmmNT EXECUTION HISTORY SuNARy

EXECUTABLE NUMBER EXCUTED TER 1
STATEMENTS OLD N= TOTAL OLD NEW TOTAL

• L-LO-PILE 27 27 27 27 1.00 1.00 1.00
LLFIND 17 16 17 17 0.94 1.00 1.00

,LPRT STR NG 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 10 0 0 0 0.00 0.00 0.00
LLSKIPTOW]D 10 0 0 0 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL.COMPILE

15-35

0, mim umu n i ~

LDRA Testbed PART II 1

LLSKIPNODE 12 0 0 0 0.00 0.00 0.00

LLSKIPBOTH 13 0 0 0 0.00 0.00 0.00

LLFATAL 8 0 0 0 0.00 0.00 0.00
GETCHARACTER 14 0 0 0 0.00 0.00 0.00

MAKE TOKE] 67 0 0 0 0.00 0.00 0.00

LLNEXTTOKEN 8 e 8 8 1.00 1.00 1.00
LLMAIN 14 14 14 14 1.00 1.00 1.00
CVTSTRING 9 0 0 0 0.00 0.00 0.00
READGRAM 38 38 39 38 1.00 1.00 1.00

PARSE 73 56 56 56 0.77 0.77 0.77

BUILDRIGUT 62 54 .54 54 0.87 0.07 0.87

BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 11 1.00 1.00 1.00
EXPAND 43 39 38 39 0.88 0.88 0.88

TESTSINCH 14 0 0 0 0.00 0.00 0.00

MATCH 15 13 13 13 0.87 0.87 0.87

SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00

TOTAL 540 283 284 284 0.52 0.53 0.53

ISUB-CONDITIONS SUMMUARY

- EXECUTED TER CON
SUB-CONDITIONS OLD NwH TOTAL OLD NEW TOTAL

LL.COIPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLIIND PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTTOKZK PROCEDURE CONTAINS NO SUB-CONDITIONS
LLTAIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS

LLSKZPNODE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB-CONDITIONS
GET CAJACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
NAK.TO]EN PROCEDURE CONTAINS NO SUB-CONDITIONS

EXAND a 8 0 S 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS

MATCH 4 4 4 4 1.00 1.00 1.00
SYTNCHONI•E 12 0 0 0 0.00 0.00 0.00

TOTAL 24 12 12 12 0.50 0.50 0.50

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LLCOMPILE

15-36

PART II LDRA Testbed

IBRANCH EXECUTION HISTORY SU)O4ARY

-- --------------- ------

NUMBER. EXECUTED TER 2

BRANCHES OLD NEW TOTAL OLD NEW TOTAL

LLCOIPILE 13 13 13 13 1.00 1.00 1.00

LLFIND 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 0 0 0.00 0.00 0.00

LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00

LLSXIPTOKEN 2 0 0 0 0.00 0.00 0.00

LLSKIPNODE 3 0 0 0 0.00 0.00 0.00

LLSKIPBO7H 3 0 0 0 0.00 0.00 0.00

LLFATAL 2 0 0 0 0.00 0.00 0.00
GETCHARACTER 7 0 0 0 0.00 0.00 0.00

HAKETOKEN 31 0 0 0 0.00 0.00 0.00

LLNEXTOKEN 5 4 4 4 0.80 0.80 0.80
LLM4AN 5 5 5 5 1.00 1.00 1.00

CVT STRING 7 0 0 0 0.00 0.00 0.00
READGRAM 20 20 20 20 1.00 1.00 1.00

PARSE 39 25 25 25 0.64 0.64 0.64

BUILDRIGHT 26 22 22 22 0.85 0.85 0.85
BUILDSZLECT 4 4 4 4 1.00 1.00 1.00

ERASE 7 7 7 7 1.00 1.00 1.00
EXPAND 16 15 15 15 0.83 0.83 0.83

TESTSYNMCH 11 0 0 0 0.00 0.00 0.00

MATCH 11 7 7 7 0.64 0.64 0.64
SYNCHNONIZE 26 0 0 0 0.00 0.00 0.00

TOTAL 292 133 134 134 0.46 0.46 0.46

1LCSAJ EZECUT • HISTORY SUDMMARY

NMU)ER EXECUTED TER 3
LCSAJS OLD 0.W TOTAL OLD NEW TOTAL

LLCXOWLE 13 13 13 13 1.00 1.00 1.00
LLPIND 34 10 11 11 0.29 0.32 0.32

LLPRTSTRIMG 10 0 0 0 0.00 0.00 0.00
LLPRTTOKZN 13 0 0 0 0.00 0.00 0.00
LLsze,•pToK 2 0 0 0 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LLCOMPILE

15-37

0• m

LDRA Testbed PART II

LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00

GZE CHARACTER 6 0 0 0 0.00 0.00 0.00
MXKETOKEN 33 0 0 0 0.00 0.00 0.00

LLNEXTTOKEN 7 3 3 3 0.43 0.43 0.43
LLMAIN 5 5 5 5 1.00 1.00 1.00 0
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRAM 25 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68

BUILDRIGHT 32 24 .24 24 0.75 0.75 0.75
BUILDSELECT 5 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TESTSYNCH 12 0 0 0 0.00 0.00 0.00

MATCH 12 6 6 6 0.50 0.50 0.50
SYNCHRONIZE 38 0 0 0 0.00 0.00 0.00

TOTAL 326 130 131 131 0.40 0.40 0.40

ISU)O(ARY or EFFECT or CUR•um TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAME TER 1 TER 2 TER 3

LL_COMfILE 1.00 1.00 1.00
LLPIND Increased Increased Increased
LLPRTSTRING No Change No Change No Change
LLPRTTOKEI No Change No Change No Change
LLSKZPTOKEN No Change No Change No Change
LLSKZPNODE No Change No Change No Change
LLSKIPBOTH No Change No Change No Change
LLFATAL No Change No Change No Change
GET CHARACTER No Change No Change No Change p
MAKE TOKEN No Change No Change No Change
LLNEZTOREN 1.00 No Change No Change
LLMAIN 1.00 1.00 1.00
CV!TSTRING No Change No Change No Change
READGRAN 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDRIGNT No Change No Change No Change
BUILDSULXCT 1.00 1.00 No Change
ERASE 1.00 1.00 No Change
EXPAND No Change No Change No Change
T ETSTYNC No Change No Change No Change
MATCH No Change No Change No Change
SYNCHRONIZE No Change No Change No Change

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LICOMPILE

15-38

PART II LDRA Testbed

mt produced on: o dut aalvabk I Ummg ADA TasibWd Veadon 4.8.01

PiAWtdair Aft Oct 12 11-44.02 1992 0 L.DJLA. 1992

Syutem View Statooeat Coverage

Figure 15-13. LDRA Testbed System View Statement Coverage

15-39

LDRA Testbed PART If 0

Hktop=D0

0

0

PART II LDRA Testbed

cm

Ph•0lb pmduhced on: o dma• v&Miabke UIW. ADA Tnt Vallio 4.9.01

Prin date: hot Oct 12 12.44:21 1992 C) L.D.IA. 1992

System View loset /Path (LCA) Coverage

IEEMM

Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage

15-41

LDRA Testbed PART II 1

Reu woduced am on Oct 12 12:35.59 IM,) IU*W ADA Tc•e VVWo 4.&.01

CoverageUtr@

Figure 15-16. LDRA Tostbed Coverage Achieved Comparison

15-42

l I l ll I t0

PART II LDRA Testbed

Plop=nnm uew LCOMPk
Results psxlw om: Th" Aw 30 13:47:41 1992 I Udiu Ada Tatld Vesion 4.1

Maint dil: Tue May 12 0&.50.22 1991M) CL.).D.A. 1992

Active flowgraph of procedur : READGRAM

.00o

..............

Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM

15-43

ft I ftl

LDRA Testbed PART 11

*0 DATA SET ANALYSIS FOR

** PROCEDURE LLFIND

1235!T DATA SET ANALYSIS

L114E DATA SETS USED

146 tostl.1.x
saapl. lex

162 testl.lex
oampla lox

163 tosti lex
sample, lox

164 ****

165 smaple.3ex

166 00

167 *0

168 testi lex
sample, lox

169 testl.lex
sample. lax

170 tostl.lox
sample, lem

171 testi. laz
sample .lex

172 tosti lax
sample, lex

173 .*

Figure 15-18S. IDRA Teatbed Data Set Analysis for LLFIND

15-44

PART II LDRA Testbed

1PROFILE ANALYSIS

LIST OF DATA SETS

1) teotlex
2) manplo.lox

ANALYSIS OF EACH DATA SET IN TURN

DATA SET 1 CONTRIDUTES NOTHING. SIZE - 44900

DATA SET 2 I NECESSARY SIZE - 72092

DATASET RECONMEDDED FOR REMOVAL 1s 1

Figure 15-19. LDRA Testbed Profile Analysis

15-45

PART II Logiscope

16. Logiscope

Logiscope employs the RADC quality metrics model to provide analysis of a set of

user-tailorable quality metrics at both the unit and integration levels. It provides coverage

analysis of statement blocks, branches, and LCSAJs at the unit level, and procedure-to-pro-

cedure path coverage analysis at the integration level. Additional capabilities include the

generation of control and call graphs, structure analysis, and pseudo-code generation to

support re-engineering.

Logiscope is one element of a comprehensive suite of CASE tools. AGE/ASA is a

CASE tool supporting functional specification activities. Based on IDEFO and finite state

machine specification methods, it supports simulation and various static analyses including

complexity analysis. It also provides test scenario generation for automatic production of

functional test suites which can be fed into the simulator or used during code acceptance

testing to ensure compliance with requirements. Scenario coverage can be measured during

simulation. Support for design is available through AGE/GEODE. This tool is based on the

Consulting Committee on International Telegraph and Telephone (CCITT) standardized

language Specification and Description Language (SDL) and provides for design and sim-

ulation of real-time software with automatic code and application generation. AGE/GE-

ODE also provides test process generation to allow independently testing the coherence of

a process with respect to the rest of the design prior to system integration. A new tool,

VEDA, supports simulation and validation of protocols specified in the International Orga-

nization for Standardization (ISO) standard language Estelle. Finally, DocBuilder is used

to produce software documentation that can be configured to such standards as DoD-STD-

2167A. It is based on the Standard Generalized Markup Language (SGML) ISO Standard

8879.

16.1 Tool Overview

Logiscope was developed by Verilog, a European company formed in 1984. It has been

available since 1985 and there are over 5,000 users worldwide. Logiscope is marketed in

the U.S. by Verilog, Inc., the U.S. subsidiary. This company also provides consulting and
training services, and hot-line support for tool users.

Logiscope is available for over eighty languages and dialects, including Ada, C, C++,

and Fortran. It is supported on a variety of workstations and mainframes under both Unix

16-1

Logiscope PART II 0

and VMS, with graphic capabilities available through a number of windowing systems. As

with all its tools, Verilog has focused on compatibility of Logiscope with international stan-

dards such as the Portable Common Tool Environment (PCTE), SDL, etc. Logiscope can

be integrated with DecFuse, HP's SoftBench, and Software Back Plane. It supports host/

target testing via use of a serial port between the host and target machines.

The evaluation was performed on Logiscope/Ada version 1.6.3. running on a Sun 4

workstation under UNIX and OpenWindows. At the time of evaluation, prices for Logis-

cope started at $14,000.

Logiscope consists of several parts:

"* Analyzer. Processes source code to provide the data needed for the Results Editor.
"• Results Editor. Takes the results file produced by the Analyzer and, potentially, the

trace file produced by an instrumented program to generate various reports.
"• Formatter. Compacts the execution trace produced by an instrumented program.
"* Static Archiver. Gathers various analysis results and manages results obtained for dif-

ferent versions of the software. 0
"* Dynamic Archiver. Accumulates results for a set of test runs and enables multiple test

suite management.

While the Analyzer is unique to a particular programming language, the remaining tools

are language independent. All tools operate in both interactive and batch mode. 0

The Analyzer operates in either static or dynamic mode, although application of Logi-

scope begins with static analysis of the software under test. The software should have pre-

viously been compiled and, where several compilation units are employed, these must be

submitted in the compilation order (this restriction applies to Ada code only). In static

mode, the Analyzer calculates the appropriate set of basic counts that will be used to as-

sesses the quality of the software under examination. In dynamic mode, it instruments

source code for instruction block, decision-to-decision path, LCSAJ coverage, or proce-

dure-to-procedure coverage. Files are instrumented individually and, potentially, for differ- 0

ent types of coverage measurement. Dynamic analysis also provides path and condition

identification to aid test data generation. After instrumentation, the user compiles, links,

and then executes instrumented source code as usual.

In general, the Analyzer can analyze files singly or as a group. It generates a Results
File that the Results Editor uses to generate a variety of reports. There is a facility for com-

bining separate Results Files together to form a single file for a subsystem, or system. It can

search for such items as code based on keywords, or code that falls within certain values

for a given metric or criteria.

16-2

PART II Logiscope

The Results Editor also operates in static and dynamic modes, presenting results at dif-

ferent levels: details for each application component, a synthesis of component results for

the entire application, and global application architecture information.

Quality analysis is the primary static analysis function and Logiscope employs the

RADC quality metrics model to define quality measurement at three levels of abstraction.

At the lowest level of the model there are thirty five predefined pr imitive metrics. The user

can define upper and lower bounds for these metrics to allow Logiscope to flag out-of-

bounds values. (Verilog provides default values for these bounds that are based on their ex-

perience over time.) The user can specify algorithms to weight and combine the primitive
metrics into up to fifteen composite metrics. Then higher-level quality criteria allow clas-

sifying components based on their computed quality values. These criteria can also be used

to get an overall quality value for a module and report on final acceptance or rejection based

on this value.

Logiscope distinguishes between unit-level metrics and architectural metrics. In the

first case, McCabe's control-oriented measures are calculated, as well as Halstead's textu-
ally-oriented Software Science measures. At the architectural level, Logiscope uses Mo-

hanty's metrics to calculate accessibility, testability, hierarchy complexity, structural

complexity, system testability, call graph entropy, and the number of direct calls.

Quality results are displayed using the Results Editor in static mode. In addition to the

Results File produced by the Analyzer, the editor requires a Reference File that contains the

definitions of the metrics being used. (A different Reference File can be maintained for

each project, allowing customization across development efforts.) For quality reporting at

the component level, the user can request Kiviat diagrams to show achieved metrics values
with respect to the defined limit values. These diagrams are used to display up to 30 user-

selected metrics, graphically showing those metrics that fall out-of-bounds. Metrics can be

displayed by component, or as a statistical average over a group of components. Kiviat di-

agrams can also be segmented into quadrants to provide an additional layer of abstraction.

Criteria graphs are available to display information relative to all associations between met-

rics and criteria, while showing the situation of metrics with respect to limit values. These

graphs also specify the category to which the component belongs.

At the global level, histograms of metrics distributions and criteria distributions are

available. Additionally, when there is a large number of components, the user can request

a graphical distribution for a particular interval or a distribution of components as a func-

tion of the limit values defined in the quality model.

16-3

Loglscope PART II 0

Finally, a Quality Report uses the components' classification based on the quality cri-

teria to present a summary in the form of the percentage of corm ponents within the set of

limit values. This report assesses whether quality recommendations for a given criteria 0

have been met, or computes a statistical average over a group of components.

Also in static mode, the Results Editor generates control graphs to provide insight into

component structure and behavior, and call graphs to describe the calling relationships of

analyzed components. Control graphs can be annotated with either source or pseudocode

line numbers. Logiscope supports control graph exploration with a zoom capability and the

display of a reduced or structured form of a control graph. The reduced form can be used

to verify that a program meets the requirements of structured programming and identify el-

ements that do not conform. The principle of control graph reduction consists of represent-

ing as a single node the control structures that have only one input and one output. The most

deeply nested structures are reduced at each successive reduction stage, and the user can

terminate this process when desired. Alternatively, the structured view displays the under-
lying structures expressed in combinations of if-then-else statements and branch statements

to reveal the hidden structuring of the processing. Measurements of a set of intrinsic char-

acteristics are available for initial, reduced, and structured control graphs. This allows com-

paring the set of alternative, equivalent views of a complex control graph and can help a

user to determine how to improve the program structure.

Exploration of call graphs is also provided to support the identification of critical com-

ponents at the architectural level, and of design rules that have been violated. This is

achieved by display of partial views and manipulation of call graphs, and quality evalua-
tion. A call graph can be displayed from any root, and the display limited to a view of the

root's descendants, ascendants, or both. Components can be grouped to clarify, for exam-

ple, which components can call that set. A call graph can be limited to display of the Logi-

scope analyzed components alone. 0

Before the Results Editor can be used in dynamic mode for coverage reporting, the trace

file produced by the instrumented program must be formatted. Subsequently, the editor can

report on the achieved coverage at both component and global levels. At unit level, the user

can request detailed reports on instruction block, decision-to-decision path, and LCSAJ 0

coverage. For each type of coverage this includes a listing identifying each instance of the

instruction block, decision-to-decision path, or LCSAJ unit, supported by the conditions re-

quired to execute that instance as appropriate, and whether or not it was executed. A path

list also indicates program paths that have not been executed. Unit coverage results can be 0

16-4

PART II Logiscope

annotated on dynamic control graphs to provide easy assessment of the completeness of

unit testing. Histograms of the distribution of components as a function of coverage rate are

available for rapid assessment of coverage progression throughout testing. These histo-
grams are accompanied by a distribution list that shows the coverage achieved for each

component. This distribution list shows the number of times each test case exercised each

coverage instance and can be used to determine how well particular test cases support or

duplicate each other.

The Dynamic Archiver is used to group the results obtained for a series of tests to allow
reporting on cumulative test coverage. Here formatted trace files are grouped into named

test suites that are stored in archive files. The Results Editor can then be run on an archive
file to generate, for example, distribution histograms for the accumulated instruction block,

decision-to-decision path, and LCSAJ coverage for all components.

At the global level, the editor reports on procedure-to-procedure path coverage. Here
coverage results can be annotated on call graphs to provide quick insight into the complete-

ness of integration testing. An accompanying textual report details the calling and called

relationships for each procedure-to-procedure path and whether that path was executed. An
additional report, the coverage table, identifies the particular paths invoked by each test

case.

16.2 Observations

Ease of use. The Results Editor provides on-line help with a list of available commands

and command descriptions. Components can be grouped into a workspace to facilitate op-

erating on a set of components as a whole. A broad selection of graphical output formats is
available, including histograms, tables, and pie charts.

Logiscope provides the user with considerable flexibility in defining the quality char-
acteristics that should be assessed and reported. It comes with a series of default quality

models, one for each of five different programming language. These can be used as is, the

user can tailor them to his needs, or develop his own quality model from scratch.

Documentation and user support. The documentation is extensive and easy to follow.

Verilog provided excellent user support.

Instrumentation overhead. Full instrumentation of the Ada Lexical Analyzer Gener-
ator (all components except llsupport) gave a size increase of just over 50%.

16-5

Logiscope PART II 0

Ada restrictions. Pragmas are not processed by the Analyzer. It is not possible to mea-

sure the coverage of a terminate alternative in a selective wait.

Problems encountered. The Analyzer reported an error when analyzing one compo-

nent (Illsupport) of the Ada Lexical Analyzer Generator and this prevented instrumenting

this component Initially, some problems were encountered with reporting on LCSAJ cov-

erage. 0

16.3 Planned Additions

Version 3.2 of Logiscope with a Common OSF/MOTIF graphical user interface was re- 0

leased in fall 1992. This new version is menu driven and supports navigation between

source code (or pseudocode) and graphs. Multiple, integrated windows are simultaneously

available to provide a user with multiple perspectives of a single software component. In

this new version, Logiscope is integrated with DocBuilder to provide automatic documen- 0

tation of new or existing code. Meanwhile, Verilog is working to integrate Logiscope with

various configuration management tools.

A companion tool which focuses on data flow analysis rather than control flow analysis

is under development. 0

16.4 Sample Outputs

Figures 16-1 through 16-28 provide sample outputs from Logiscope.

16-6

0PART 11 Logiscope

0t

Iz

CI

CL

* cn

16-7~

Logiscope PART II

Begin

2 ADAstatement(s);
While LOW /- HIGH Do

1 ADA statement(a)i

If ITNI < LLSYNBOLTABLE(MIDPOINT) .KEY Then

1 ADA _statement(s);
Zlaif not (ITEM (LLSMDBOLTABLE(MIDPOINT) .KEY) and (ITEM -

LLSYI4DOLTABLE(MIDPONT). KEY) Then
If LLSIH3OLTABLZ(NIDPOZNT).KIND - WIHICH Then

Exit of Subprogram;

Else
Exit of Subprogram;.

End If;

Else
1 ADAcstatement (a);

End If.
End of While;

End;

Text of Component:

ILL_COPI LE/LLFIND: LLST21KGS : LLSTML: return: INT=ER •

Application: allarc
Version: Vi
Language: ADA
F ile ll:oapile. a

Figure 16-2. Loglscope Textual Representation of Control Graph of Function LLFIND

16-8

PART II Logiscope

Basic counts of component
LLCOMPILE/LLFIND: LLSTRINGS : LLSTYLE: return: INTEGER

I Number of statements i 11 i Number of comments 2 I
wNumber of labels o Number of jump statements I 01

I Total number of operators I 29 I Number of different operators I 13 I
I Total number of operands 28 I Number of different operands I ii I
I Total number of oalls I 0 o Number of different calls I 0 I

I Operators I Nbr Operators I Nbr

(exp 4 -2
()tab 3 ELSE 2
+ 3 ELSIF TEW 1-
/ I IF TRW .. END IF 2

1- 1IRETURN 3
:- 5 WHILE LOOP MD LOOP I1
< - i - - -

Operands I Nbr I Operands Nbr

0 I 2 LLSh•0OLTABLE(.).KID I 1 3
1 I 3 LLTABLESIZZ I i
2 1 lILOw I 4

xITn I 2liuzcxl I MC
, LLSMOOLTALE(.).KEY I 2 I I

Figure 16-3. Loglscope Basic Counts for Function LLFIND

16-9

Logiscope PART II 0

21 with LL DECLARATIONS, INTEGERTEXT.IO, TEXT_10;
22
23 prooedure LL COMPILE is

161 function LLFIND (ITEM , LLSTRINGS; WHICH : LLSTYLE) return INTEGER is
162 - Find item in symbol table -- return index or 0 if not found.
163 - Assumes symbol table is sorted in ascending order. 0
164
165 LOW, MIDPOINT, HIGH t INTEGER;
166
167 begin (' DDP 1 Begin ')
168
169 LOW -- 1;
170 HIGH :- LLTABLESIZE + 1;
171 while LOW /- HIGH loop (' DDP 2 While ')
172 MIDPOINT :- (HIGH + LOW) / 2;
173 if ITEM < LLSYNBOLTABLE (MIDPOINT).KEY then (' DDP 3 If
174 HIGH s- MIDPOINT;
175 elsif ITEM - LLSTMBOLTABLE (MIDPOINT).KEY then (' DDP 4 Else *

176 (* DDP 5 Else-If*)
177 if LLS7NDOLTABLE (MIDPOINT).KIND - WHICH then (* DDP 6 If t 0
179 return (MIDPOINT);
179 else (o DDP 7 Else ')
180 return (0);
181 end if;
182 else (' DDP 8 Else *)
183 - ITEM) LLSTMBOLTABLE(MIDPOINT)A.KEY
184 LOW :- MIDPOINT + 1;
185 end if;
186 and loop; (t DDP 9 End-While ,)
187 return (0);
188 - item is not in table
189
190 end LLFINDI 0
191
192 procedure LLPRTSTRING (STR : LLSTRINGS) is
193 - print non-blank prefix of atr in quotes
194
195 begin (t DDP I Begin ')
196
197 PUT (STANDARD_ERROR, ''); 0
198 for I in STR'range loop (* DDP 2 For-_Loop*)
199 exit when STR.(Z) - ' '; (' DDP 3 If
200 (' DDP 4 Else ')
201 PUT (STANDARD_ERROR, STR (I));
202 end loop; (' DDP 5 Znd-For-Loop*
203 PUT (STANDARDERROR, 'U'),

204
205 end LLPRTSTRING;

852 end LL CONPILE;
'53

Figure 16-4. Logiscope Commented Listing for Function LLFIND

16-10

PART 11 Log iscope

4C

C, C

CL

0.

I C!
U,.g. uaw 14nCO

02 ~ 03 I toe
aC A IeaI

MIn f ad O l I
* x x

-16-11

Logiscope PART 11

0

'4L

64 0

*v4

040

16-12

PART 11 Logiscope

0

0.0

0
C.,

a. 0

a in

eq4 .4

16-13

Logiscope PART 11

* ~ 01

Al -.0

00

00

CP

r.V-J

00

00

0 000 00

C.0
-0 a F O

16-14

PART 11 Logiscope

x

In E
0

C4)
E0

M0

'CC

Ma

P. U1

16-15

Logiscope PART 11

Icategori jcomponents Ivalue
--

I 1 ILLOR4PILE/Lk..TOKVNS I 0
i 1 LL SUPPORT I 0

I I I1 3.03
I 2 LL COMPILE I I I
I 2 ILLSUPPORT/LOOK._.AEEADLLALTTRIDTJTE I 1
I I ~:return:LLATTRIBUTEII

1 2 ILLCOMPILE/LLM&ZN I 2 I
2 ILLýCOWIlE/LL...TOKES/ADVANICE/LOK I 3 I

I I~AHEADI
I 2 1L LSUPFORT/ALTZRNATZ/E/NGE!RANGRS I 3 I

-I LATTRIBUTE :LLATTRID3UTEs returns L I0
I I~LATTRIDBflEI

1 2 ILLSUPPORT/COMPLVTE..YATTZRKS j 3
I 2 ILLSUPFORT/D(1T.PATTERKJIAME: FILE I 3 I
I I ~TYPE:LLSTRINGSII

I 2 1L LCOMPILE/LLPRTTOKEN 4 I
I 2 ILLýSUppORT/CONCATENATE. LLAT-TRIDUT I 4
I I ~E: LLATTRIBUTZR r~tUrfl LLATTRI3UTE I

I 2 ILLýSUPPORT/COKPLETR.PAT: LLAT!RIU I 30
I I~TEI

I 2 I LL..COMPILE/LLMAWI/RZADGMI/DUILDR I 32
I ~~I=GT: 11TUGER II

I 2 IlL..SUPPORT/COK4PLUTZEPAT/COtKPLMEi 39 1
I I ~ALT/RESTRICT: LLI!TRIBU!R: SELECCTIO I
I I _SET: returnst LLATTRIBUTEII

I I I 90.90
I 3 IlLý_SUPPORT/COW4LETELPAT/CO@LME..I 56
I I ~ALT/RESOLVE AMBIGUITY:s LLATTRIDMTE II

I 3 1LLSUPPORT/UIITSCAN_PXOC I 84 I
I 3 IlL _SUPPORT/UITSCANPR0C/nUIT.PA I 5 II
I I !~TERKHATOI s LLATTRIUUTEs LLSTRINGS II

: :BOOLEANs BOOLEAN zBOOLIA II
I 3 ILL~CONPILE/LLTAKEacTION: InTEG 8 5 I

I I I I 6.06

I ~List of components per setrics category 0

IApplications all-are
Iversion: Vi
ILanguage: WAA
IMetrics Number of statements
Scomponents: 66

Figure 166.10. Loglscope Components per Metrics Category for Number of Statements

16-16

PART II Logiscope

0 -

00

a,

0

m a,

o

"--4

4 .
A D 0

o61
16-1J

". • • • I-

Logiscope PART 11

* *0 o

asa

00

C4.

-' 0

16-18

* PART II Logiscope

2 -

I c4 1

So

* 0

o

$4

A

u.

aw

00

16-19

Logiscope PART II 1

<reference V3. 1>

•--------------
------ -----------

'I I
I Quality model definition'I
- --- - - - - ------ - --------

Quality Criteria Definition
*MCO
The aim of this table is to explain how the components
are classified for the TESTABILITY criterion

TESTABILITY
---- ----------- ------------- 0
VG IMAXLVLSI NIO I associated diagnosis
#*-------------------------- -------------- -

OK I OK I OK ((4+4+2)/10) * 100 - 100 ACCEPTED
OK I OK ((4+4+0)/10) 1 100 - 80 TO STRUCTUREI
OK I OK ((4+0+2)/10) * 100 - 60 TOScUT

OK ((4+0+0)/10) * 100 - 40 "

OK OK ((0+4+2)/10) * 100- 60 N •

OK ((0+4+0)/10) * 100 - 40 9

#. OK ((0+0+2)/i0) * 100 - 20
((0+0+0)/10) * 100 - 0 TO-REWRITE
------------------ -----------

* For following languages

/ADA

Component Level
8
Text help definition
MAIDZT *CHAINEe

Rien - ' ADA statement(s)'
'CONFIG* Fine - 'End Select'

Nazdec - 10

* Users Metrios Definition
MD

Coents Frequency COKR - NCOV/N.STMTS
Average aize of statements : AVG__S - PR,_LGTN/N.STMTS

Editable metrics
ME

NSTmTS I 1 50 MAX_LVLS I 1
CC"_R F 0.20 1.00 N PATHS I 1 80

PRLGTH I 3 350 NEXCEPT I 1 50

AVGS F 3.00 7.00 N3_JMS I 0 0
VG I 1 20

Figure 16-14. Loglscope Excerpt from Default Quality Model

16-20

S.. . . • a l i l i0

PART II Logiscope

I Quality Criteria Definition
MC

TESTABILITY - VG + MAX LVLS SIMPLICITY - 2*VG + 2*N STMTS + AVGS

ACCEPTED 100 100 40 ACCEPTED 100 100 30

TO CUT 50 100 10 TO DOCUMENT 80 100 25

TO-REWRITE 0 50 0 TOINSPECT 40 80 20
TO TEST 20 40 10
TO-CUT 0 20 0

LEGIBILITY - VG + PR LGTH + MAX LVLS + AVGS SELFDESCRIPTION - COMR

ACCEPTED 75 100 20 ACCEPTED 100 100 10

TODOCUENT 50 75 15 TOCOJEflNT 0 100 0

TOINSPECT 0 50 0

Quality synthesis definition
'Q

ACCEPTED 90 100
TO DOCUMENT 8o 90
TO INSPECT 50 80
TOTEST 30 50
TOREWRITE 0 30

ARCHITECTURE LEVEL
#

Users Matrics Definition
AD

Average Paths Number/Component AVGPA - CALLYATHS/NODES

Editable netrics
*AEm

AVG._PA F 1.00 2.00

LEVELS I 1 9
HIERCPX F 1.00 5.00

STRUV_CPX F 0.50 3.00
ENTROPY F 1.00 3.00

Quality Criteria Definition
AC
MODULARITY - 3*HIER CPX + 2*STRU CPX + 5*AVGPA CLARITY - ENTROPY + 2*LEVELS

ACCEPTED 100 100 0 ACCEPTED 100 100 0
TODOCUMENT 80 100 0 TODOCUDMT 60 100 0

NEED._LEVELS 50 80 0 TOPACK 30 60 0

NhED MODULAR 0 5.0 0 TO_CLARIFY 0 30 0
* -- •---O-..-C- ...-o--------- O . .

Figure 16-14 continued: Logiscope Excerpt from Default Quality Model

16-21

Logiscope PART II

ID I I I I I I
I 2 3 24 i i

i Test cases I I I I I coverage I

I testl.lex I x x I I 100.00% I

I sa-ple.lex I x x I x I x 1 100.00% I

I Total I I x x x 1 100.00% I

I1 coverage of. omponent:

LLCOMPILM/LLPIND z LLSTRINGS: LLSTYLE: return: INTEGER

Application: all-arc2
Version: VI
Language: ADA
Test Suite: TEST1.LEZ •

Figure 16-15. Loglscope I8 Coverage of Function LLFIND

16-22

PART II Logiscope

9 1 1 2 3 4 5 6 7
Test cases

IDA•Test 64 174 174! s0o 61! 461 13!

Total 64 174 1 174 1 50! 61! 46 13!

DDP

DP 8 9 10 11 12 13 14
Test cases

IDA Test 4 ~ 0j 79 95j 144! 30 0

ITotal j 4! 0 79 1 95~ 1 44!1 30~ 1 0

DDP
115

Test cases Coverage

IDA Test 64 86.66%

I Total - 64 86.66%!l

DDP coverage of component:

LL COMPILE /LLMAIN/READGRAM/BUILDRIGNT: INTEGER

Application: ida
Version: Vi
Language: ADA
Test Suite: CURRENTTEST SUITE

Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT

16-23

Logiscope PART II •

DDP niIr Condi ti o Eecuted

1 I 394 iBegin j x

2 397 For Loop I inx
THISRHS+1. .THISRHS+PRODUC
TIONS (WHICHPROD) .CARDRHS

------------------------- -------------------------------------
I 3 398 if I <= LLRPSSIZE x

I 4 402 1 Case ICH ' "i I x

I 5 407 1Case ICH at I x

6 409 Case Ii - I, I x

I 7 414 Case ICHf - g" x

8 49 1Case ICH = pI x

9~ 421 Else-Case CH <> '1', 'a', In'', 'g'O,

I 10 I 427 I I END OF LIZNE(LLGRA•) I 0

111 429 Else not (END OF LIN•E(LLGRM)) I x

I 12 1 432 1 If I END OF LINE(LLGRAM) j x

I 13 I 434 E -vse not (ENDOFLINE(LLGPAM)) I x

I 14 I 4 E8 Else not (I <- LLRSSIZE) I

15 446 End-For-Loop not (I Inx
THZSRHS+1. . HBISRPS+PRODUC
TIONS (WHICHPROD) . CARDRHS)

I DDP coverage I 86.66%

DDP list of component:

LLCOMPILE/LLIAIN /IREADGPAM /BUILDRIGHT: INTEGER

Application: Ida'
Version: Vi
Language: ADA
Test Suite: CURRENT TEST SUITE

Figure 16-16 continued: Logiscope DDP Coverage of Component BUILDRIGHT 0

16-24

,,, l | in | | |

PART 11 Logiscope

--

Test cia.: 11 1 17f~----------------
IDA-Test 1 0! 0 9j 15 isl 261J

jTotal 1f 0f Of 0 15is1 5 261

-- - -- - - - - - - ------------ - -- - - - - - -- - - - - - -

ITest CA CAea 1 0 2 13 1
IDA _Teast 0 4 3 6 6 8

Teat7aa1a1
7 is 19 120 J21

rest-cae---

__DAftat 1 12-1 0 1 79 0 1 65 1 30 1 1441
jTotal I 12 1 0 1 79 01 65I 3I:44f

=A7 2 3 24 125 26 127 128 1
ZDA rest I30 1 1441 511 01 21 3 1 261

l2'oal 30 1~ 144I 51f 0 21 31 2Sf

a------- -------- *

ITest 04a=ea 29 30 31 Coveragre
IDA Test 48 I 14 j 0 I 74.194

T2otal I481 141 01 74.19%I

LCSA-7 coverago of compozent:

LL-COMPXZL/ZJLLKANIZADGRRMfBUILDpJtGBT: INTEPGZR

APplcatlow: Ida

Languae": AAA
Meat suits: =NRUtw2TES2! SUITE

Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-25

Logiscope PART 11

--
Line Label pe Condition

number T Condtio
--------- ---------------------- ----- -------------------------

Begin
395 2 Statement(s)
397 While I in

THISRHS+I. .THISRHS+PRODUCTIO
NS (WHICHPROD) . CARDRHS

399 If I <- LLRHSSIZE
399 2 Statement (s)
401 Case
403 4 Statement(s) CH - "1t
408 1 Statement(s) CH = 'a"
410 4 Statement(s) CH w In'
415 4 Statement(s) CH = "g"
420 1 Statement(s) CH M ,p,
424 1 Statement(s) CH <> I'I, 'a', 'n', 'g', 0"Ip"
425 Raise PARSING ERROR
426 End of Case
428 If ENDOF LINE (LLGRAM)
428 1 Statement(s)
430 Else
430 1 Statement(s)
431 End If
433 If END OF LINE (LLGRAM)
433 1 Statement(s)
435 Else
435 1 Statement(s)
436 End If
437 1 Statement (s)
440 Else •
441 1 Statement(s)
444 Raise PARSING_ERROR
445 End If
446 End of While
447 End

Type I LCSAJ numbers

Begin 1 2 3 4 5 6 7 8.
2 Sateents) 23 567...............................

2 Statement(s) 1 4 56 78.
While 1 2*; 4 .5* 7 8 * •••

23 24..5 7.......23 2526 27 28 30 31
If 2345 6 7

. 25 26 27 28 29 30 31
2 Statement(s) . 2 3 4 5 6 7

S.......... 25 26 27 28 29 30..
Case . 2 3 4 5 6 7

................ 25 26 27 282930..
4 Statement (s) 7--

1 Statement(s) 6 13.

4 Statement (s) S.........12.

Figure 16-17 continued: Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-26

mm~mnmmmim m n i • I~ •0

PART 11 Logiscope

................. 28.....
4 Statement(s) . ,.* .** .* 4.........

...................... 27......
SStatement(s) 3 10.............

Raise PARSING ERROR............9...............

End of Ca"e............7 .0'11 12;1

f.............................4 15

I Statement(s)....................4.......

1 Statemet(S)...............................19

End If.........................3 12718 19

1 Statement(s)........................17 .. 1.9

I Statement(s)

End f....................................17..19

Zi* .*.22.,......................

I Statement(s)......16

.21 22...............

.... Wil,

Rais PASNZ.O....................... 1....
...........................

nd Ifio: d

Figue 15,4 cotined:LoicoA7 lCStJCvrg of c omponent:BIDIH

LL~COPIL/LIAN/PADRA/3ULD16 2':N27E

Logiscope PART 11

m CL0S
0

"44
T- 'r--

0 0

16-2

PART 11 Logiscope

14

0%

CC
0 .4-0 'mI

- I m

0

on

I. .

0 a 0 0 . 0 0to.~

0~~~~ 4h a r D " f

16-29

Logiscope PART 11

Component INumber IB
of IB executed

ILL~COmiWLE/LL._ToKNS 0 0.00%
I LLCOIPILE/LLMAIN/PARSE/TESTSYNCH 3 I 0.00%
I LLCO1PIL3/LLMAIN/PARSE/TEST3:YNCH/SYNCHRONI:ZE 10 0.00%
I LCOjIIELLMAIK/PARSV/=N 'D/NATCU: INTMEGR: return: I 0 0.00%
IINTEGER I
ILLýCONPILE/J4AXETORZN.NODE- YPE: STRING: NATURAL: returnl 13 I 0.00%

:LLTOM2N
I ILCOKPIIE/NAXELTOKEN/CVTS'TRING: STRING: return: LLSTR I 2 I 0,00%

IlLýCO3PILE/GETGRHARACTER: DOC.EAN: CHARACTER: BOOLE~AN I 3 I 0.00%
ILLCOJWILE/LLFATAL 11 0.00%0
I LL...CO3PILE/LLSKIPB0TH I 1 I 0.00%
IlLýCO3WILE/LLSKIPNODE I 1 I 0.00%
I lLCOMPILE/LLSKIPTOKEN 1 I 0.00%
I LSO3PILE/LLPRTTOME 2 I 0.00%

I LLCO3PILE/LLPRTSTRING:LLSTRINGS I 3 I 0.00%

iaLLCOxaWILE/LLTOzNS/ADVANCE/NZXTHABMACTER I 5 I 40.00% 0

I LLCO3P.ILE/LLTAKEACTION:INTEGER I 68 I 52.47%

IL4_co3~xLE./LL?4&iN/pARsz 12 I 58.3 3%

I L...CONPILE/LLN&IN/PARSE/EKPANID 9 I 77.77%I

I LLCOMPILE/LutaiiN/READGHAmfDuILDRIGRT: InazGER 14 I 5.71%

It..CO3PILE/LI&IAIN/READGRAM 9 I100.0 0%
I LLCO3pILz/LmAIN/READGRhmfBuiLDsz.ECT: InmeGE 3 I100 .00%
ILLCOIPILE/LLMAIN/PARSE/ERASE I 3 2 00. 00%
ILLCO3WILE/LLN=CTTOKEN 2 I100.00%
I LcOIPILE/LlTOKD1S/ADVANCE/NKxTSPZECS1I 13 I100 .00%

lCOIMIELLrTOKXfS/ADVANCE/NMzTýDmqTIFIU 5 I100.00%
I L...CO3WIIZ/LL_2TORENS/ADVP.NCE : OOLEANLLTOKDI: BOLEAN I 10 1 100. 00% J
I L..CODWILrE/Lk..TOKDIS/ADVANCE/LOOK...ABED 1 I100.00% 1
I U'.CONILE/rLL.JORS/ADVJNGE/CEARADWVANCEC 3 100.00%
I L...CONWILE/LL...TOKWS/ADVANCE/GETSHARM: CHARACTER I 3 I100. 00%
ILLCO3WIIE I 11 100.00%
I LLC0X3~rLE/wMIM4I 1 I100.00%
I LLCOIWILE/LLTOKDIS/ADVANC/NZX $TBTIG I 4 I100.00%
I LLCOHPILE/LLrIND LLSTRINGS :LLSTYLE greturn: INTEGER I 4 I100.00%

IB coverage for test suiteI
IApplication~: all1- aro2
' Version: Vi 1
ILanguage: ADA
ITest Suits: TESTI.LEX

Figure 16-20. Logiscope Overall 113 Coverage for input testl.lex

16-30

PART 11 Logiscope

Component I Number I Number I DDP
I of DDP lof calls i executed I

I LLCONPILE/LLPRTSTRINIG:LLSTRIENGS I 5 I 0 I 0.00%
ILLCO)0ILZ/ILPRTT0KEN I 3 I 0 I 0.00%
ILLCom~iLE/LLsKI1PTOKZN I 1 0 I 0.00%
ILL_COJPZLE/LLSKIPNODE I 1 I 0 0.00%
I LLCOMWILE/LLSKIPBOTH 1 I 0 I 0.00%
ILL-COMPILU/LLFA!AL I 1 I 0 I 0.00%
I LiL_CONPILE/GET_.CHARlACTER: BOOLEAN: CHARACTER: BOOI 5 1 0 1 0.00% 1
I LEAN I I I I
I LLýCONPILE/Z4AXETOKEN/CVTSTRING:STRING-returnI 5 1 0 1 0.00%1
I :LLSTRINGS I I I
I lLýCOMPILE/MAEEýTOKEN:NODE-TYPE:STRINGtNATURALI .15 1 0 I 0.00%1
I : return: LLTOXZN I I I
I LLCOMWILE/LLMAIN/PARSE/TESTSYNCH/SYNCHRONIZE I 17 I 0 I 0.00%
I Iý.CO)P3ILE/LLMAIN/PARSE/TESTSYNCH 5 I 0 0.00%

I LLCONPILE/LLTOXENS/ADVANCE/NXTCHARACTER I 5 I 31 I 40.00%

ILLý_CONPILZfLLTAKEALCTION:INTEGER I 69 I 659 I 52.17%
ILLO?.WILE/LLKAIN/PARSZ 2 9 I 2 I 57.89%

I LCOMPILE/LL-TOKENS/ADVANCE BGOOLA: LLTOREN:1 B is 15 355 1 93.33%1
IOOLEAN I I I I

ILLCOPICLE I 1 1 2 1 100.00a
LLCOMPILE/LL_ OKENS/ADVANCIC/GE:THAX CARCTER I 5 1 2154 I100.00%
ILL -COMPILE/LLOKENS/ADVANCE/cHARADVhNCE I 5 I 2152 I100. 00%

I IýCONPILE/LLTOKDIS/ADVANCE/L0OK-AHEAD I 1 I 52 I100. 00%
I LLCOMPLE(LLMAIN/READGRAN .ii 2 I100.00%
I 1LLCOJWILz/LI.NzxTTOKMq 3 I 355 I100.00%
ILLCONPILE/LLFIND.LLSTRINGS:LLSTYLE:return:IZNTI 9 1 510 1 100.00% 1

I EGER I I II
I LL_.COMPILE/'LLKIN/1PARSX/ERASEI 5 12105 I 00.00%
ILL...COMPILEC/LLUNAI 1 I 2 I100.00%
ILL.CONPICLE/LL-TomDS 1 I 2 I100. 00%
i LLcoNPILz/LLmi4AN/RzADGRAN/DuiLDSELCT: zNTE=~ 3 I 129 100. 00%

DDP coverage for test suite

IApplication: all-arc2I
Iversion: vi
ILanguage: ADA
ITest Suite: TESTI.LZX

Figure 16-21. LoglSCope Overall DDP Coverage for Input testl.lex

16-31

Logiscope PART II 1

Metrics I Mnemonic I Value I ! •

Number of levels I LEVELS I 2 I
Hierarchy complexity J HIERCPX I 1.00 I
Structural complexity STRU CPX I 0.50 I
Control entropy I ENTROPY I 0.00 I *
Average Paths I AVGPA I 0.50 I * I
Number/Component I I 0

Metrics table of root:

LLSUPPORT/DITPATTERN_NAME:FILETYPE:LLSTRINGS

Application: all arc
Version: Vi
Language: ADA

Figure 16-22. Logiscope Metrics Table of Root 0

I II
P A T H S I Testability I Nodes

"-LLSUPPORT/EMIT_PATEMNNAME. FILETYPE: LL I I I
STRINGS I
"'TE T IO/PUT:FILE_TYPE.CHARACTER I 0.5000 I 2

Call graph path testability of root: I

LLSUPPORT/D(ITPATTERNNAME: FILE TYPE: LLSTRINGS

Application: allarc
Version: Vi
Language: ADA I

Figure 16-23. Logiscope Call Graph Path Testability of Root

16-32

PART II Logiscope

I Component I Access

I LLSUPPORT/MITPATTERNNAME:FILE TYPE .1.0000
I :LLSTRINGS I I
I TEXT_10/PUT:FILETYPE:CARACTER I 1.0000 I

Call graph component accessibility of root:

LLSUPPORT/EMITPATTERNAME- FXLETYPE: LLSTRINGS

Application: all arc
Version: V1
Language: ADA

Figure 16-24. Logiscope Call Graph Component Accessibility of Root

I Num I Calling components R uim 1 Called components

49 I LL.SUPPORT/ENMTPATTERN -NA I 72 I TEXT o/PUT:FILETYPE: CAAC I
:FILE -TYPE: LLSTRINGS I TER

Call graph oalling/oalle4 components of root:

i LLSUPPORT/EMIT'PATTERN NAME: FILE TYPE: LLSTRINGS

Application: all-arc
Version: VI
Language: ADA

------------- -- ----- - ------- -----------

Figure 16-25. Loglscope Call Graph Calling/Called Components of Root

16-33

I

Logiscope PART 11

0. m

400

.1cc

I'I

13 0

N % 0

0.

mg,,

it0
Im0

16434

PART 11 Logiscope

Iv I Num I List of call graph components

I 1 I 49 I LSUPPORT/EHITPATTERN NAU: FILE TYPE: LLSTRINGS
1 I 22 ILLCOMPILE

I 1 10 I LLCONPILE/MAXETOKEN:NODEýTYPE:STRING:.NATURAL:return:LLTOKEN
1 I 8 I LCOMPILE/GETCHARACTER: NOOLEAN:CHARACTER: EQOLEAN

I 1 I 6 1LLCOMPILE/LLSXIPBOTN
I 1 I 4 I LLCONPILE/LLSKIPTOKEN
I 2 I 72 ITEXT_10/PUT: FILE TYPE: CHARACTER

2 I 21 I LCOMPILE/LLKAIN
2 I9 IlLý.CO3WILE/MAEXTOKER/CVTSTRING: STRING: return: LLSTRINGS

I 3 I 20 ILLCO3WILE/LIMAIN/PARSE
I 3 I 14 I LLCOMPILE/LIM&IN/READGRAN
I 4 I 15 I LLCOMPILE/LUIAIN/PARSE/ERASE
I 4 I 17 IlLýCOMPILE/LLMAIN/PARtSE/UXPAND
I 4 I 12 IlLý_OiEPILE/LLK4AIN/READGRAE(/UILDRIGHT: INTEGER
I 4 I 13 I LLCONPILE/LLMAIN/READGRAN/DUILDSE-yL! T: INTEGER
I 4 I 79 ITEXT10/CLOSE :FILE TYPE
I 4 78 TEXT IO/OPEN:ILTP:FILE,-:r~lMMODE:STRING:STRING

5 2 6 iaLLco.mpiLE/LLKAIN/PARsE./ZXPAnDAATcH: INTEGER: return: INTEGER
I 5 I 19 1I LLCONPI[LE/LLKAI:N/PARSE/TESTSYNCH
I 5 I 80 ITXT3O/InTEGER 10/GET: FILETYPE: NUN: FIELD
I 6 I 7 I LL..COXPILh/LLFATAL
I 6 IS1 I LLCOMPILE/LLMAIN/PARSE/TESTSYNCH/SYNCNRONIZE
I 7 I 11 I.LL..COh(PILE/LLNEXTTOERN
I 7 I 66 LLýcoxPxLz/LLTAxzAcTIoN: INTEGER

I 9 I 3 I LLCOWILE/LTOKENS/ADVANCE : OOLEAN L0I4iOLA

I13 I 39 IlLýSUPPORT/CONPLETEPAT/COMPLETE-CONCAT :LLATTRIBfUTE
I13 I 55 ILLýSUPPORT/DITSCA8 NPROC/EMITSELECT/EMITCHAR: CHARACTER
2 4 I 71 ITEXT 10O/PUT: CHARACTER

I14 69 TEXT I0/PUT:STRING
I14 I 33 1 LLSUPPORT/ALTERNATE: LLATTRIEUTE: LLATTRIDUTE: returnm:LLATTRIDU

1 T:
I14 I 43 I LSUPPORT/CONCATENATE: LLATTRIDUTE: LLALTTRIIUTZ: return: LLATTRI

I I mUTE
115 1 32 I LSUPPORT/ALTZRNATE/NERGE _RANGES: LLATTRIBUT : LLATTRIBUTE ret

I I I urn. LLATTRIDUTE

I List of call graph components per level of root:

IApplication: all -arc
Iversion, Vi
ILanguage: ADA

Figure 16-27. Logiscope List of Call Graph Components per Level from Root

16-35

Logiscope PART II

1 2 3 4 5 6 7

Test cases

I zDA~ost I 1I 11 ii ii 2 1 3981

Total I I I

8 9 10 J 11 12 13 14

I ZDA_'est I 2S5 1 0 134 230 1 0 2541 ol

Ifttal I 254 0o I dI 4 230 0 254 01

S.....pp'• j

I. ZDAest I 0 0, 0! 0I 0o 0I
ITotal 0I 0 0 o o0 0 0 0 0

0

Test cases j 5 8 7 98 Coverage

I ZDA_ t I 0 I 174 I 227 I 64 I 44.314 I

ITotal. 1 0 1 1741 2271 I 44.31%l

Cell grapb Ppp coverage of ro.t:

ApplicatIon: Ida
Ves10on: Vi
Language: ADA
Test Suite: CURRENTTZST sum~

Figure 16-28. Logiscope PPP Coverage of Root

16-36

0

PART II MALPAS

17. MALPAS

MALPAS comprises a suite of static analyzers that provide control flow, data use, in-

put/output dependency, and complexity analysis. It is unique among the examined tools in

providing symbolic execution and compliance analysis of code against a formal specifica-

tion.

17.1 Tool Overview

MALPAS was developed in the late 1970s at the United Kingdom Ministry of Defense

Royal Signals and Radar Establishment to verify avionics and other safety-critical defense

system software. Since 1986 it has been marketed and supported by TA Consultancy Ser-
vices, Ltd., formerly called Rex, Thompson & Partners (RTP). MALPAS has 50 users, in-

cluding 5 Ada sites. The Ada translator is a relatively new product released in July 1991.

RTP also markets seminars to introduce potential customers to MALPAS and training

courses. A user group is supported. MALPAS is available on VAX/VMS platforms. The

tools examined in this study were MALPAS Release 5.1, IL Version 5, Pascal-IL Transla-

tor 3.1, and Ada-IL Translator 1.01. The price for MALPAS and the Ada-IL translator at

the time was £60,000.

The analyses performed by MALPAS are intended to assure software safety, reliability,

consistency, and conformance to standards. They include the following:

- Control flow analysis to reveal the underlying program structure and unreachable
code.

* Data flow analysis to detect uninitialized variables and successive assignments with-
out an intervening use.

• Information flow analysis to identify input-output dependencies.
• Path assessment to produce a structural complexity measure.
• Partial analysis using progrim slicing to reduce analysis time for semantic and com-

pliance analysis.
* Semantic analysis to provide symbolic execution for each loop-free path.
• Compliance analysis to verify code against formal specifications.

MALPAS analyses are based on an Intermediate Language (IL) representation of pro-

gram specifications or source code. Translators from several languages (including Ada, C,

Fortran, and Pascal) to IL are available. The approach of using a common intermediate lan-

guage for analyses simplifies the extension of MALPAS's capabilities to other program-

17-1

MALPAS PART II 0

ming languages. Formal program specifications can also be expressed in IL. At present no

automated translation tools for other formal specification languages such as OBJ, Vienna

Development Method (VDM), or Z are supported.

Analyzing application source code is a two-step process. First the code is translated into

IL. Since the Ada translator was not available when the tool examination started, the Pascal

translator was examined first. Pascal code is translated as a single complete program; this

is a straightforward process. The translation of Ada source code to IL is significantly more

complicated. The sample Ada code analyzed contained several separately compiled pack-

ages and subunits. First the generic input/output packages used by the program had to be

instantiated (by hand), translated, and loaded into an IL code library. Then each program

unit had to be translated and loaded into the IL code library.

The second step is to run the analyses on the IL code. A single tool controls all of the

available analyses. Options are selected by command line parameters and results are writ-

ten to files that can be printed. Default parameter settings for initial analyses of new code

were set up to include control flow, data use, and information flow analyses. Control flow,

data flow, and information flow analyses are fairly standard static analysis techniques.

Structured programming has largely eliminated control flow anomalies. Data flow and in-

formation flow anomalies, however, are still useful indicators of potential problems. Infor-

mation flow, for example, identifies all of a subprogram's inputs and outputs, which may

be more than those passed as parameters.

The compliance and semantic analyses are computationally more complex. The partial

analysis capability allows these analyses to be restricted to particular modules or paths 0

within the program. MALPAS's semantic analysis option provides symbolic execution of

loop-free code segments, that is, for each possible path through a segment, the value of each

modified variable is given as an algebraic expression in terms of the input variables. This

provides valuable feedback to a programmer about the meaning of the code and the results

that will be produced when the code is executed. The compliance testing option uses this

same information to check formally specified requirements that have been added to the IL

code.

17.2 Observations

Ease of use. MALPAS is a batch-oriented tooi even though it may be invoked interac-

tively. The only user interaction is through the set of options that can be selected from the

17-2

PART II MALPAS

command line. The large number of options may make MALPAS "flexible" for expert us-

ers. Novice or casual users, however, may have some difficulty controlling non-default pro-

cessing.

Introducing the intermediate language for analyses may cause problems for some users.

All analyses and reports refer to the IL version of the program rather than to the original

* source code. The mapping back to the original code must be done manually. The IL ap-

proach may simplify extending MALPAS to cover a range of different programming lan-

guages (by requiring only new IL translators), but it imposes a level of separation between

the actual source code and the analyses that must be compensated for by the user.

Translating Ada source code to the intermediate language was found to be somewhat

more complicated than expected. The sample Ada code analyzed contained several sepa-

rate packages and subunits, and normally requires several compilation steps. The MALPAS

Ada to IL translator, however, required several additional steps that Ada compilers either

do not need or are able to hide.

Documentation and user support. Installation and operating instructions were clear,

thorough, and accurate. Installation required simply editing sample command files to name

local directories and disks. The manuals included good examples and the tools operated ex-

actly as described.

Ada restrictions. Support for all aspects of Ada that can be analyzed statically is the

vendor's eventual goal, however, the current MALPAS tools support only a subset of Ada.

The Ada to IL translator recognizes all valid Ada code but the translation to the intermedi-

ate language is not complete. The intermediate language, for example, does not include any

mechanism for concurrency, so Ada tasks cannot be translated. This restriction is particu-

larly unfortunate because execution-based testing of concurrent programs is often difficult

to control. Repeating a particular test, for example, might not produce the same results each

time. Rigorous static analyses of potential task interactions would contribute significantly

to identifying and correcting tasking problems.

Translation of Ada's generic program units is not supported. Generic units provide a

powerful mechanism that simplifies programs and enhances reuse. Ada's standard input

and output facilities, for example, are defined in terms of generic packages. MALPAS cur-

rently requires manual instantiation of any required generic units.

Access types (pointers) and dynamic storage allocation are not supported. Analysis of

unconstrained use of pointers, for example to detect potential "dangling" pointers, is virtu-

17-3

MALPAS PART II 0

ally impossible. A workaround for disciplined use of pointers for data structures such as

linked lists is to define abstract data types that encapsulate the pointers. MALPAS would

be able to analyze application code that used the abstract data types since the pointers are 0
hidden. MALPAS, however, would not be able to analyze an implementation of the ab-

straction that used pointers.

Problems encountered. The MALPAS tools performed as specified in their documen-

tation. No failures occurred in use.

17.3 Planned Additions

Version V6.0 of MALPAS (due for release in November, 1992) includes two additional

summary reports from the Semantic Analyser. These reports present key information from

the standard Semantic Analyser report in a form that may be easier to interpret. Both reports
present the conditions for and the assignments made on each path through each loop-free •

section of code. The Paths Table report tabulates the conditions and the assignments made
to variables on each path. The Transforms report lists each variable and shows the condi-

tions under which each assignment will be made.

17.4 Sample Outputs

Figures 17-1 through 17-6 provide sample outputs from MALPAS.

17-4

0!

PART II MALPAS

program average (input, output);
[This program shares a stream between two consumers by merging the)
(processes and evaluating the result of the second process eagerly.)

type resulttype - integer; (consumer process result type I

streaselement - integer: (stream element type)
vae conslresult: resulttype; (result returned by consumer 11)

cons2result: reaulttype; { result returned by consumer #2)

Stream operations)
procedure advance (var eos: Boolean; var next: streamelementj more: Boolean),

coast CR - 13; [Advance the actual input stream
var ch: char;
begin

if more then
if eof then

eon : true
else begin

eos :- false;
if eoln then begin

readln;
next :- CI
end

else begin
read(ah);
next :- ord(ch)
end

end
end;

procedure consume, I Consume the input stream as one process)
var aeo: Boolean; I (count stream elements and sum stream elements))

next: streamelement;
begin

conslresult : 0;
cons2result - 0;

advance (eos, next,true);
while not eos do begin

oonalresult :- oonslresult + it f count stream elements
cons2renult : cons2result + next; i sum stream elements I
advance(eos,next, true)
end:

end;

begin
Consume;
writeln('The averaga of ', oonalresult:l,

chaacteors is ', chr(cons2result div conslrosult), ".')
end.

Figure 17-1. MALPAS Sample Pascal Code Illustrating MALPAS Analyses'

1. Due to MALPAS's restrictions on analysis of Ada access types, the lexical analyzer code used as a
sample test program could not be thoroughly analyzed. To illustrate the reports that MALPAS produces a
simple Pascal program was substituted. This program and the MALPAS analysis reports are shown in the fol-
lowing figures.

17-5

MALPAS PART II

[1I TITLE average;
(2]
13 1 Pascal to Malpas IL Translator - Release 3.0 1
(41
[61 _INCLUDE/NOLIST "USR: (ADATEST. PASCALIL30J FIXED. PREAMBLE'

"Including file USR: [ADATEST.PASCALIL30]FIXED.PREAMDLE;1 CCC

'C' End of file USR: (ADATEST.PASCALIL3oiFIxED.PREA34LE;l *20
[71 INCLUDE/NOLIST "USR: (ADATEST. PASCALIL30] TEXT. PAMBLE
"' Including file USR: (ADATEST.PASCALIL30]TmXT.PREAMDLE;1 CCl

"C End of file USR:[ADATEST.PASCALIL30]TEXT.PREANBLE;l *"U
(8]
(101 CONST cr : integer - +13;
(ll CONST lit_i__theaverage :. char-array - "The average of ';

[121 CONST lit_2_characters : char-array - characters is '';

(13] CONST lit _3 % char-array- "0.0; 0
(141 [* result returned by consumer #2 ']
[16)
(171 [C Stream operations *1
(181
1201 PROCSPEC advance(INOUT som t boolean,
r211 INOUT next : integer,

(221 IN more boolean)
(231 IMPLICIT ([(C IL Global Parameter Section C•

t241 INOUT input : text);
"*** WARNING : no DERIVES list specified for procedure advance
1251 [' Advance the actual input stream *I
1261
1271 PROCSPEC consume
(281 IMPLICIT ([Ca IL Global Paremeter Section 'C]
1291 11OT conslresult, cons2Zresult : integer
1301 INO1 T input : text);
*as WARNING no DERIVES list specified for procedure consume
(311 [* Consume the input stream an one process '1
(321 [* (count stream elements and sum stream elements) ']
[331
(351 NAINSPEC (INOUT input : text
[361 nOT output text);
1371
1381 PROC advance;
1401 VAR ch: char;
(421 #1: IF moze TUNI
[43) #3: IF sof__text(input) THEN
(441 15: eU .. true
(45] ELSE
(461 #6: Gos ,- falsel 0
[47] #7: IF eoln__text(input) TMMN

(41 19: text__readin(input),
(491 #lO: next :- or
t501 ELSE
[511 #11: textread char(input, oh);
1521 #121 next :- charpos(ch)
(531 #8: IDIF 0

Figure 17-2. MALPAS Intermediate Language Translation Of Sample

17-6

I)
PART II MALPAS

(541 M4: ENDIF
(551 #2; D(DiF
[561 #STOP: (SKIP]
(561 #END: ENDPROC [*advance*]
[571
(581 PROC consume,
((601 VAR eO__6: boolean;
[611 VAR nex*t_6: integer;
[631 #1: conslresult :- 0;.
(641 2: cons2result :- 0,
[65 M3:
(651 advanoe(eos_6, next 6, true);
"*** WARNING : advance has not been fully .specified
(661 M4: LOOP [while loop]
(671 M6: EXIT [while loop) WHEN NOT(NOT eos_6);
[681 *7: conslresult :- conalreault + 1;
[691 [0 count stream elements *1
[70] #8: cons2result :- cons2result + next _6;
1711 [' sun strom elements *1
[72] #9:
[72) advance(eos_6, next__6, true)
*** WARNING : advance has not been fully specified
[73] #5t ENDLOOP [while loop]
[741 #STOP: [SKIP]
[74] #DMM: EIDPROC [*econsumae*]
[751
[761 MAIN
[791 VAR conslresult: integer;
[S0] (w result returned by consumer #1 *]
tali VAR oons2result: integer:
(831 M1:
[131 consuse(a)

• WARNING : consume has not been fully specified

(841 *2: text write(output, litl__tbeaverage);

[901 #STOP: [SKIP]
1930 #END% NDIDAIN
[931 [i*si WARNING : WARNINGS IN PASS I ... See Listing File]
[95] FINISH
"i WARNING : Procedure body for text get has not been defined
0 WARNING : Procedure body for teztpage has not been defined

* WARNING : Procedure body foi textwriteln has not been defined

Flgur*17-2 continued: MALPAS JnteRmeDSIate Language Translation of Sample

17-7

MALPAS PART II

After ONE-ONE, 13 nodes removed.
No nodes with self-loops removed.

Node id No of pred. Succ. nodes
#STARJT 0 #END

E•ND I
After KASAI (from ONE-ONE), No nodes removed.
After HECHT (from ONE-ONE), No nodes removed.
After HK (fron EECHT), No nodes removed.

After TOTAL (from HK), No nodes removed. 0

Control Flow Summary

The procedure is well structured.
The procedure has no unreachable code and no dynamic halts.
The graph was fully reduced after the following stages:

ONE-ONE, KASAI, EC, SK, TOTAL
The graph was not fully reduced after the following stages:

None

Figure 17-3. MALPAS Control Flow Analysis of ADVANCE

Key

H - Data read and not subsequently written on some path between the nodes
I - Data read and not previously written on some path between the nodes
A - Data written twice with no intervening read on some path between the nodes
U - Data written and not subsequently read on some path between the nodes
V - Data written and not previously read on some path between the nodes
R - Data read on all paths between the nodes
W - Data written on all paths between the nodes
Z - Data read on soae path between the nodes
L - Data written on some path between the nodes

After ONE-ONE
From To Data Use Expression
node node

#START *DND H c oh input more
I i input more
U * BoN input next
V a oh ecs next

R t more
Z oh input more
L ch . eos input next

Summaxy of Possible Errors

No errors detected

Figure 17.4. MALPAS Data Use Analysis of ADVANCE

17-8

PART II MALPAS

information Flow
-.............

After ONE-ONE
From node #START to node OUND

Identifier may depend on identifier(s)

GOB INs/INOUTs eos input more
CONSTANTs false true

next INs/INOUTs input more next
CONSTANTs cr

input INs/XNOUTls input more
ch INs/INOUTs input more

VARs/OUTs ch

Identifier may depend on conditional node(s)

GOB #3 #1

next #7 #3 #1
input #7 03 #1
ch #7 #3 #1

Summary of Possible Errors

No errors detected

Figure 17-5. MALPAS Infonnmation Flow Analysis of ADVANCE

17-9

MALPAS PART II

Semantic Analysis

After ONE-ONE

>From node #START

To node UEND

IF NOT(sore) 0
THEN MAP
ENDMAP
S ---------------------------------- --------------------------------

ELSIF more AND eoftext(input)
THEN NAP

eOS :- true;
ENDNAP

I- ---- -- ---------------------------- --------------------------
ELSIF =roe AND eolntext(input) AND NOT(eof text(input))
THEN MAP

eon :- false;
next 13;
input - readln text(input);

ENDMAP
I ---- ------ --- - -------------------------- --- -I0

ELSIF more AND NOT(eoln text(input)) AN- NOT(eof text(input))
THEN MAP

eon false;
next :- charpos(read__text _cha: (input)),-
input - skiptext char(input);
ch :- read__textchar(input);

ENDNAP EMDIF

Figure 17-6. MALPAS Semantic Analysis of ADVANCE

17-10

PART II QES/Manager

18. QES/MANAGER

QES/Manager is one component of the QES/Workbench. To fully understand the role

of QES/Manager, it is necessary first to look at the other workbench component, QES/Ar-

chitect. QES/Architect is a database system designed to create and manage testing data. It

has automatic capture/playback, test data generation, variable processing, and global edits.

Fully instrumented testcases can automatically change or generate test data via external

files, calculations, predetermined ranges, or system responses. Alternatively, test data can

be imported from external sources such as screen form builders or databases, or captured

from the workstation. Conditional execution is provided. By prototyping test data, usable

testcases can be created that provide a picture of the user interface. These testcases can act

as the specification and be used to simulate the system operation. QES/Manager is a subset

of QES/Architect. (The full QES/Architect product is expected to be examined in the near

future.) QES/Manager provides the data management facility that supports documenting

test plans and testing activities. It also provides for easy import of ASCII data and export

of data to automated test systems.

Additional workbench components expected to be released early in 1993 include QES/

Qease for keystroke capture/playback, QES/Programmer for automatic unit test design and

execution, and QES/Expert that aids a user in diagnosing the cause of a failure.

18.1 Tool Overview

QES/Manager is marketed by Quality Engineering Software, Inc. (QES). In addition to

quality assurance (QA) products, this company markets consulting and programming ser-

vices, specializing in showing customers how to improve QA and testing practices. A hot-

line support facility is available. QES/Manager was released in November 1991 and has

over 50 users. It is language independent and runs on IBM PC/AT, or compatible machines,

under MS-DOS 3.0 or higher. QES/Manager is compatible with local area networks

(LANs). It supports the following test environments: DOS, 5250/AS-400 emulation, 3270

emulation, asynchronous communications, UNISYS, and Tandem. Interfaces exist to sev-

eral test execution tools such as AutoTester.

The evaluation was performed on demonstration version 2.2 of QES/Manager running

on a WIN TurboAT. This demonstration version is fully functional, although limited in the

18-1

QES/Manager PART II

number and size of testcases that can be specified. At the time of evaluation, QES/Manager

prices started at $2,500.

QES/Manager embodies a predefined test model. The basic test items are as follows:

" Testcases. Define the basic unit of test data. Each Testcase is intended to be an inde-
pendent, reusable testing element that tests one logical operation or module.

" Test Drivers. Group collections of Testcases so that a Test Driver consists of a list of
Testcases to be run in a specified order. Further levels of grouping are available: a
Test Driver List can be used to group Test Drivers, and Master Drivers to group Test
Driver Lists.

Together, Testcases and Drivers form the test plan. A map function showing the developed

organization of Testcases with Drivers is available from QES/Manager. 0

Relationships between test items are maintained using the standard nomenclature as-

sociated with databases. All named items have a keyword option which can be used for

such tasks as searching and forming organizational groupings. Testcases, for example, can

be classified by application or type of test, such as regression, acceptance, or system tests.

When prototyping test data, the contents of a Testcase are specified by user-defined

templates. When data is imported from another test tool, QES/Manager will automatically

define the necessary templates, without user intervention. In essence, a Testcase is equiv-

alent to a template with the associated input (keystrokes) and output (responses). Access is

provided to the sequence of keystrokes, not just the result. For example, once the Testcase

is created, the user can view both the sequence of keystrokes and the final entry format.

Different types of information can be attached to a Testcase to sequence, modify, identify,

and manage it. A full-screen editor is provided for creating and modifying templates. Tem-

plate fields can be either named or unnamed, however, global edits can be applied to named

fields. Default responses can be specified. Instead of manually entering test data, the user

can define converters that will import data from ASCII text files and transform it into QES/

Manager format.

Prior to using the Drivers to guide the execution of tests, the user can view actual se-

quencing of test inputs and outputs to assess their correctness. In sequence mode, QES/

Manager presents the operation of the application (as represented through its inputs and S
outputs) in its natural flow. That is, it shows the sequence of default responses, keystrokes

applied to the default responses, and the response of the application to that input. A simu-

lation function provides a similar capability, although here the user can specify time delays

18-2

LS

PART II QES/Manager

to be applied to the sending of keystrokes and responses and can manually control the flow

by stepping through the simulation.

The user can request reports on any test item. Essentially, the reporting facility acts as

a database query engine. Here again, the user specifies templates that define a report layout

in terms of cursor positions. These layouts can be saved for reuse and a copy-and-paste fa-

cility is provided, together with a sorting function.

QES/Manager provides a limited set of administration functions. These allow the sys-

tem administrator to assign new users with password and access permissions, or change the

access privileges of existing users. An authority matrix displays each user's rights for ac-

cess to QES/Manager functions and data.

18.2 Observations

Ease of use. QES/Manager is a menu-driven system, with both mouse and keyboard

navigation. Listboxes are provided to show available items for selection. QES/Manager can

be customized to the extent of defining database paths, hotkeys, printer ports, and the use

of color in the display screens. Conformance to IEEE and Common User Interface (CUI)

standard nomenclature, interfaces, and menus is intended to facilitate use of all QES/Work-

bench tools.

The available on-line help includes context-sensitive help, a manual with hypertext

links and a print button, and a notepad for the user to add personal help information. A tu-

torial and on-line demonstration is also available.

An import capability provides for importing test cases in the form of ASCII text files.

These are converted into QES/Manager format using user-defined templates. A similar ex-

port capability is available.

Documentation and user support. The documentation provided with the demonstra-

tion version of the tool was fairly limited. Although it provides good guidance for stepping

through one example use of the system, it does not provide a general overview of tool ca-

pabilities and usage. Installation was straightforward.

Problems encountered. QES/Manager operated as described in the documentation.

18-3

QES/Manager PART II f

18.3 Planned Additions

OS/2 and Windows support is under development and expected to become available in
the fourth quarter of 1992.

18.4 Sample Outputs

Figures 18-1 through 18-3 provide sample outputs from QES/Manager.

18-4

mi Iaa m H ll~ IIIli I0

PART II OES/Manager

QES DOCUMENTATION PROJECTS

Pruject Name: ONLINE 1MANUAL DOCUMENTATION PROJECT MANAGEMENT

Main Task: ARCHITECT MANUAL MANUAL PROJECTS FOR ARCHITECT

Sub-task: DESIGN DESIGN MENU DOCS

Menu Name: CAPTURE CAPTURE Menu Documentaticr

New / Modify _ Entry Name:
How to.. _Glossary _Index _T.O.C. -Main entry _Advert/pr

dione:---

QA: -.....

Menu Name: BUILD BUILD Menu Documentation

New / Modify - Entry Name:

-How to.. __Glossary -Index _T.O.C. -Main entry __Adert/pr

done: --
IDA: ...

Menu Name: IMPORT IMPORT Menu Documentation

New / Modify _ Entry Name:
-How to.. _Glossary _Index _T.O.C. Main entry Advart_/pr

done:

Menu Name: EXPORT EXPORT menu documentation
New / Modify Entry Name:

dn: ow to.. _Glossary _Index __T.O.C. Main entry _Advert/pr
done:
QA: ...

Menu Name:
New / Modify - Entry Name:

How to.. __Glossary _Index _.T.O.C. __Main entry _Advert/pr
done: --

Menu Name:
New-/ Modify - Entry Name:

How to.. __Glossary Index _T.O.C. _Main entry __Advert/pr
done:-.
QA: -----

Menu Name:
New / Modify __ Entry Name:

_How to.. _Glossary _Index _T.O.C. __Main entry _Advert/pr
done:
QA:

Figure 18-1. QES/Manager Report Layout

18-5

QES/Manager PART II

MD: ONLINE manual
TDL: Architect manual

TD: QES/intro
L- TC: ABOUT QES

- TD: DESIGN
T C: CAPTURE
TC: BUILD
TC: IMPORT
TC: EXPORT

- TD: TEST
TC: RUN
TC: SCHEDULE
TC: DISCREPANCY

- TD: MANAGE
H TC: KEYWORD
- TC: TEMPLATE

TC: VARIABLE
- TC: RECOVERY

TC: TEST DRIVER 0
TC: TESTCASE
TC: TEST DRIVER LIST
TC: MASTER DRIVER

- TD: SECURITYE TC: LOGIN
TC: ASSIGN USERS
TC: CHANGE PASSWORDS

- TD: REPORT
- TD: UTILITYE TC: BACKUP/RESTORE

TC: CONFIGURATION
TC: DEFINE TOOLS

L- TD: HELP
TDL: Manager manual

- TD: QES/intro
"L- TC: ABOUT QES

- TD: DESIGN
E TC: CAPTURE

TC: BUILD
TC: IMPORT
TC: EXPORT--TD: MANAGE

TC: KEYWORD
- TC: TEMPLATE
- TC: VARIABLE
- TC: RECOVERY
- TC: TEST DRIVER
- TC: TESTCASE

TC: TEST DRIVER LIST
TC: MASTER DRIVER

- TD: SECURITY .

E TC: LOGIN
TC: ASSIGN USERS
TC: CHANGE PASSWORDS

- TD: REPORT
- TD: UTILITY

F- TC: BACKUP/RESTORE
TC: CONFIGURATION
TC: DEFINE TOOLS

--TD: HELP
TDL: Tech ref manual

t TD: FILE INFO
TD: MESSAGE INFO

Figure 18-2. QES/Manager Map of Master Driver

18-6

PART II QES/Manager

PROBLEM REPORT FORM

Number/Name: 0047(F/C/03) Process Key Problem

Status: A.Resolved No further modifications needed
Fix/Enh: B.Fix Error needs correction
Severity: C.Critical Must be fixed in next release
Function: D.Runable Usable in Regression test
Product: E.OES Architect
Path: P03.Testcase

Form Generated: Tue Jul 28 14:50:57

PROBLEM RESOLUTION REPORT

Resolution Code (1-8) Resolution Version

1 = Fixed 5 - Withdrawn by Tester
2 = Cannot Reproduce 6 = Works to Specification
3 = Fixable, but Deferred 7 a Disagree with Enhancement
4 = Cannot be Fixed 9 - Enhancement Excepted

Problem Summary

Problem Resolution

0s

Resolved By Date

Resolution Tested By Date

Figure 18-3. QES/Manager Problem Report

18-7

0 - ; i i ' ' • aa a

PART II SoftTest

19. SoftTest

SoftTest supports requirements-based test analysis using cause-effect graphing. It de-
rives test conditions to guide the preparation of test data. It also provides a measure of test
adequacy in terms of the number of testable functional variations for which tests have been

specified.

19.1 Tool Overview

SoftTest was developed in 1987 and is marketed and supported by Bender and Associ-
ates. There are currently over 150 users. The tool runs on any IBM PC, XT, AT, PS2 or
compatible platform under MS-DOS; since it executes independently of the software under
test, the target or development environment of the software is not a restricting factor. Bend-
er also markets project methodology guidelines, consulting services, and training courses
on software quality assurance and testing. Interfaces via outline files of test case descrip-
tions exist to several capture/playback tools including Automator QA, AutoTester, Gate,
Microsoft Test for Windows, SQA:Robot, Sterling TestPro, V-Test, Workstation Interac-
tive Test Tool for OS/2, XRunner, and TestRunner.

The version of SoftTest examined was Beta Release 4.0, running on a Compaq Deskpro
386/20. At the time of examination, the price was $2,500.

SoftTest automates a requirements analysis technique called cause-effect graphing, de-
veloped at IBM in the early 1970s. The primary phases of analysis are as follows:

"• Extraction of node, relation, and constraint definitions from cause-effect graphs.
"* Functional variation analysis to identify combinations of input conditions required for

tests.
"* Test condition synthesis to consolidate variations and produce minimal test sets that

will exercise all the elementary functions specified.

Before using SoftTest, the user must prepare a cause-effect graph definition from the
functional specification of the software under test. This process starts with identifying the

set of input conditions (the causes) that a program must respond to, mapping these to the
set of output conditions (the effects) that the program must produce. Unique names are as-
signed to each cause and to each effect, called nodes. SoftTest distinguishes primary nodes,
that is, those that are basic inputs or final outputs, from intermediate nodes. In particular,
SoftTest assumes that all effects that are not inputs to any other relationship (that is, prima-

19-1

SoftTest PART II 0

ry effects) are observable and that effects that are input to other relationships are not ob-

servable unless explicitly specified as being forced observable. This special case of forced

observable allows intermediate nodes to be used to permit testing variations where the re- 0

sults of one functional variation may be obscured by other variations. Relations between

nodes are specified in terms of logical relations such as and and or. Finally, exclusive, in-

clusive, one-and-only-one, and requires constraints that restrict the invokable combinations

of cause states are identified. Another statement, the mask statement, is included in the con- 0

straint category. It is a qualifier that is used when the true or false state of a particular node

will render the state of other node(s) to be indeterminate; qualifiers work by causing spec-

ified nodes within a test case to be ignored under certain conditions.

The resulting cause-effect graph definition is expressed using a declarative, non-proce-

dural language based on Prolog. This language includes a facility for defining a data dic-

tionary of node names that is maintained independently of any particular cause-effect graph

definition; this data dictionary can then be imported as required. A subgraph facility pro-
vides for partitioning a large specification into several parts.

Once the cause-effect graph definition has been prepared, SoftTest will perform a Vari-

ation Analysis to identify all the individual unique functions the software is required to per-

form. The thesis of this approach to testing is that although the number of possible 0

combinations of input conditions may be very large, a program can be thoroughly tested by

exercising this small set of unique functional variations. Some functional variations may
not be testable because, for example, it may be physically impossible for certain combina-

tions of input conditions to arise. These variations are flagged as infeasible. The Variation 0
Analysis can be set to report on primitive or full-sensitized variations. In the first case, only

primary nodes are included, whereas a full-sensitized analysis will include all nodes that

impact a variation. Two measures of graph complexity are reported: (1) the number of func-

tional variations divided by the number of primary causes, and (2) the number of functional 0
variations divided by the sum of the number of primary causes and the number of primary

effects. These complexity measures yield high values when inputs are combined in many

different ways and low values if inputs are used in simple relationships.

The cause-effect graph definition can also be input to the Picture Presentation phase. 0

This phase produces a pictorial representation of the cause-effect graph showing nodes,

their logical relations, and any applicable constraints. It is intended to aid the user in ensur-

ing that the cause-effect description accurately reflects his understanding of the specifica-

tion's logic. 0

19-2

0

PART II SoftTest

The Test Synthesis phase generates the minimum set of test cases that will ensure that

all feasible functional variations are exercised. Each test case is given in the form of a test

specification that identifies the causes and effects that should be true and those that should

be false for this test case. (Prior to test execution, these test cases will be used to help in

manually determining the actual test data needed.) Test cases can be reported in three

forms. For each generated test case, a compact listing identifies the invokable causes(s) and

their state(s) and the observable effect(s) and their state(s). An expanded batch listing sup-

plements this with a full node description for each cause and effect. An expanded script list-

ing provides much the same information but groups related causes and follows them with

their associated effects for each test case. This phase also generates a fault coverage and

test definition matrix that can be used for planning and tracking the test effort. The fault

coverage matrix indicates the functional variations addressed by each test case and includes

statistics that report on the percentage of testable variations achieved. The test definition

matrix identifies the nodes .` - Ided in each test case.

Test Synthesis is nut ...stricted to the generation of new sets of test cases. For example,

if a specification is changed, Test Synthesis can be used to report coverage of the revised

functional variations achieved by an existing set of test cases, or to determine the new test

cases that must be added to an existing set to fully cover these functional variations. As a

final point, Test Synthesis itself may result in the identification of additional infeasible vari-

ations. These are variations based on any declared constraints and other relationships that

are found to be indeterminate.

The latest SoftTest release includes the ability to extract test documentation. A 2167A

reporting facility produces a requirements to test case traceability report that conforms to

DoD-STD-2167A Section 4.1 requirements. Additionally, a Structured English require-

ments specification can be generated from the SoftTest input file.

19.2 Observations

Ease of use. SoftTest's user interface provides simple menu-driven commands to ini-

tiate processing, review, and print results. It is also possible to invoke one of a number of

third-party text editors from within the tool so that graph specifications can be modified and

analyses rerun without leaving the tool. The hard part is developing the complete cause-

effect graph definition for software to be tested; this is not a limitation of the tool, but re-

flects the difficulty of the underlying specification task. Even though the cause-effect graph

19-3

SoftTest PART I1

language is clear and simple, writing specifications in this form requires some experience.

Training courses offered by the vendor may also prove useful.

SoftTest can be used interactively or in batch mode. A command queue facility pro-

vides for specifying a group of cause-effect graph file name specifications to which subse-

quent processing will be applied.

Documentation and user support. The tool documentation and user support were

quite good. Installation was simple and the tool operated exactly as described in the refer-

ence manual. Two tutorials were provided-one that worked through examples of how to

run the tool and one that discussed requirements-based testing in more general terms.

Problems encountered. SoftTest performed as documented. No problems were en-

countered in its use.

19.3 Sample Outputs

Figures 19-1 through 19-8 provide sample outputs from SoftTest.

1

0

19-4

PART i1 SoftTest

1/016/92 03t53p.m. D, I CU•3T %IDaLZZICM. CEO

C/9 Graph Input fort C-8 Graph for 4.1t tLeical Pattern Notatlon

TITLE 'C-B Graph for 4.1: Lexical Pattern Notation'.
/*Graphed 7-13-91 by Blaine Mragg*/
/*This graph covers page 4, section 4.1*/
I*NOTM, XT mean. Non terminal expression*/
/siit3s BE imsane Reqularexzpression*/
/*NOTa, VS wand Vertical Bar alternative aeparator'/

NODUS

START ANKLelBegin the Lexical Pattern Notation Checking'.
SC OUND.- & amui-colon was found'

I 'a mi-colon was not found'.
5 C 33MR301-isplay the 30 SI3H-COLON POUND error memasg' j/b.
DIPF LZ ID-'A semi-colon was found-define as the end of the lexicon' I/b o0s.

AS-POUND 3B-'The Assign symbol was found before the and of the lexicon'

T'The Aeeignsymbol was not found'.
183RR0R- 'Diplay the NO ASSIGNMNT SYMBOL error message' ib.
BIG NT WIgL- 'Non terninal defined-Begin Non terminal syntax check' I/b OS,.

* 1 39 LIT*- The first character of the Man terminal is a letter'

I'The first character of the Non temi.nal is not a letter'.
CH1 33303'."Display the INVALID FIRST WT &vcmAW3 error mesaage' I/b.
VILID CHI-'!he first character of the Non terminal is valid.' J/b OB8.

S3B -CVAL-'The eubseqont characters in the NT are valid'
I'One or more of the subsequent NT characters are invalid'.

SUB _CHJAl N- 'Display the INVALID SUBSEQUENT CHRCTU (s) error message, I/b.
D US- 'There is A DWEBl UMD3A1CORZ in the -T expression' jI/b.
DOyUSZ-'Display the DOUBLE 0U3050033 error message' I/b.
LLLT_l1M-'The NT easpression is lese than or equal to one line long'

J'The NT expression in more than one line long'.
XT OR 3N-'DiSplay the NT SZIMSSZON 13 TOO LOMB error message' /b.
VALID7NT. 'The Non terminal expression is valid' I, /b MS
E00aii-' te regudar expression contains one or more characters'

S"The reqular expression has no characers (is iUL) '.
NULLR M 72 -'Display the NO 3M1M1R 11RZXSIICOM error message' b.
330 33 WiVL-' Begin the REGULAR EXPRESSION syntax evaluation-' Ilb o0.

0SVALID-'The Quotation Symbol syntax and contents are valLd'OS.
QS-'There is one or more quotations symbols in the 31'

I'There is no quotation sysblols in the R3'.
QS• •1A'The quotation symbols balance'.
9803-'The quotation symbol syntax in OR-030.
glOONT-'Tbere is one or more characters within each set of quotes'.
9S811-'' J/b O03.
08_12-'' lb 3O8.
U03Q3 IKO-Display the UNBALANCED QUOTATIONS error meseage' fl/b.
NULL___QSI-'Display the EMPTY QUOTATZON STNUOL8 error message' /b.

VB VALID-'The Vertical Bar syntax and contents ace valid' j/b ON3.
VS- There is one or more VS alternative separators in the R3' l/b.

Softflat 4.0(ETA) 1144)-000 G•6311 MrM Phase Zmpst - 1 -

Figure 19-1. SoftTest Graph Entry Phase Input

19-5

SoftTest PART 11 0

11/06/92 O3:53p.m. Di CUvfCzGXnALxzccIr. CG

C/i graph Input fort C-8 Graph for d.1: Lexical Pattern Notation

VS LS CONT * There is one or more characters on the left side of each Ve,
I'There are no character an the left side of each VB1.

VS-RS CONT * There is one or more characters an the right side of each yin'.
VB-1W- /bOBS.
VB_12-'' I/bOBS.
V8 .IE- MDisplay MISSING LEFT SIDE ALTENNATZ error message' /b.
Yin 38 EXm'Display KISSING RIGHT SIDE ALTERNAT error message' I/b.

DO VALID-*The double dot syntax and contents are yalid' I/b 035.
DO:-'There is double dot notation in the 31'

I-There is no double dot notation in the RE'.
DDO LINQ-' The characters on the left side are in single quotes'

'-The character on the left side are not in single quotes,.
DDO LBCOWW-There is one or more characters on the left side of the ODO

I-There are no character on the left side of the DD'.
DOCSMIXg. The characters on the right side are in single quotes'.
DD RS CONTI? There, is one or more characters on the right side of the DD'.
vDO LIvAL-'The left side of the DD is vILID'o3.
DO 38 VP.L-'Thm right side of the DOD is VMJIDIOBS.
ODO LI QEM- *Display the MISSING LEFT SIDE QUOTATION error imessage' /b.
ODOLB~-'D-1isplay the D0 EMPTY LXFT SI0E QUOTATIOK error message' 1/b.
DC035_03K-'Display the MISSING RIGHT SID2 QUOTATION error massage'llb.
DDO RI OM- 'Display the OD EMPTY RIGHT SIDE QUOTATION error message' j/b.
OD 11-'' /b 038.
DOCI2'' /b 038.

BRA VALID-'The Braces syntax and contents are valid'03S.
BRA- 'There are one or more braces in the RZ'

'-There are no braces in the aEv.
BRA-HAL- 'The Braces in the RR balance'

'-The Braces in the HE do not balance'.
IRA-COMI- 'There are one or more characters within the braces,

'There are no character within the braces'.
DNA 11w' I /b 038.
331ý12-'' lb CBS.
8RA 533_K- 'Display the UNBALANCUD BRhChS error message'.
XRA EmPTT!EM- 'Display the NIFTY 33103 error message.,

IRK VILID-'The Bracket syntax and contents are valid 035.
BRK- 'There are one or more Brackets in the JE'

'-There are no Brackets in the m'.
IRK SAL- 'The Brackets in the RE balance,

' The brackets Lu the RE do not balance'
15100Wt- 'There are one or more characters within the braces'

'Thar are no characters within the braces'.
3-131- ''/b 038.
IRK 12-' /lb CBS.
IRK 1UD EM - 'Display the UNUALANCED XRAA3TS error messg I/b.
IRX 3NPTY EM- 'Display the BXMT BNA3ATS error jamlsag' /b.

SoftTest 4.OCNIA) iSTIC-00 GRAPE 313K Phase Zapft -2-

Figure 19-1 continued: Soft Test Graph Entry Phase input

19-6

PART 11 Sot tTest

11/06/92 Wts5 p.m. S a\CU8TCM0\IDA\LIIICOI. oZG

C/K Graph Input fort C-B Graph for 4.1s Lexical Pattern Notation

VALID E- R-The regular expression in vaIld'I/b 058.
VALID LUZ Theo LEXICOff IS VALID-1/b 058.
DOmiXT- login checking the next lexical stat amaint'.

CONSTRAINTS
Krim (not 330 RI EVAL, 93, VB, ODD vSPA, DI) .
MASK (not DRY _LZX IUD,ASFOUND-SE).
MASK(not m=ONTEZVAL, 031 EQ LIT)
MASK (not VALID 031, SUP CU VAX, OUS US *LL-LTILN).

*NASK(not VALID NT,R130017).

MASK (not QSO- QSOU).

HASK(not VB,*Vi LS CONT. VaRI00IIT).
"MASK(not Do, 00 Li INQ,OD LS 0017, DD RE INQDOD I 00117).
MASK (not S"A. IA SAL, MRA 0011).
MABK(not amK, URiNAL. aiRKMT 01).

RILATIOIII
017 LII END: -START-ANAL and 50700160.
BC-IRMO: -not 1070010D and START-ANAL.
110 XT IVAL: -DZIV LIX END and As7001051.
AS ERZROR -DIV L~iX ND and not Ai170111013.
VALID 031 sBZ-DU T IVAL and 051 EQ LI.

* 031 EZRROR: -DIGNT EVAL and not 0R1 SQLIT.

VALID-NT: -VALID 011 end 515 03 VAX. and not cue-us and LL iT ILN.
SUBUMRAI -VALID CHI and not UB-US 0VAL.
DUI-UUMia-VALID-CH1 and DUB-s.
W OR I~s -VALID CHI AND not iLL? 12..
510c RE EVIL:-VALID T and =300117.
NuLL RiE -VALMiD mwan not 330011.

QSOK: -QS and QSSAL.
Q5_12 :-4)IOK and QICOUT.
QS_12 I-aot QS.
QIVYALID s-08_l or @11X2.
USQI IX: -4P end not OSWA.
NULLQ8_EKs -418_9 and not @100117.

VS -12 s-V3 and VS -LS 001O7 and V3_NS 0017
VS III-aot Va.
Vi LUEM X~-VS and not VS 1.Z 017
VS m: -moVS end not vs7SRB017M.
vs vM.IDsa-VS Ii or VSi -2

DD LS VAX.:-DO and ODO LUINQ and SD iLl 0011.
0D ES VAX.i-OD and 00 Re130 and DD Re CONT.

Do -117- DDO Ls VAX. and DO RI-VAL.
OD-12t-not 0i0.

S~ftlest COMIIA) NTOPWOS GRAME MUM Phase Inoput -3-

Figure 19-1 continued: SoftTest Graph Entry Phase Input

19-7

SoftTest PART 11

11/06/92 03:53p.m. D3 \C~Il3Tc3GDA\LzZICO3.C

c/2 Graph Input fart C-s Graph ror 4.1: Lexlcal Pattorn Notatlon 0

0D0 VILID*-OD Ii or DO 12.

DD LSQ~iX-0 and not DD-LB.INQ.
00 LB CIM: -00 and not DD LB CONT.
DO US QIK: -DO and not DO71 R INQ.
ODDRS-CH: -DD and not DDORS..OONT.

BRA Ii: -IRA and BRA SiAL and IRA-COST.
BRA 12s-not B=A.
BR-A Os-BRA 11 or MRA 12.

BRA 033M m-niRAand not BRA. mia..
BRA UNPT K 3M: BA and not BRA CONT.

BRA 11:-MM and URK RAL and BRA COST.
niRA12:-not BMM.
IRK VILID i-IRA 11 or UKA 12.

IR BltiM: =-BRAand not BRK BiAL.
BRA EOMPT M:-BR and not BRA CON?.

VRLID RE: -330 RE MVAL and QSVALID and VI. VILID and DO VALID and SMRA VLXD

and BRA7 VALID.
VBLID LIX: -VALID RNi.
Do- NEXT:-VALID LII.

TRITS

0

0

0

Saftfegs COMIEA) 95T40-W0 RWAE MW~ Phase Zaput -4-

Figure 19-1 continued: SoftTest Graph Entry Phase Input 0

19-8

0

PART I SoftTest

11/06/92 0 4 :00p.m. DI \CUe3CMG\IDA\IZZ CMI.P0V

Functional Variations: C-3 Graph for d.1t Lexical Pattern Notation

NOTE: CUNTESTAWLX> and <1NVFAZIBLZ2 variations from the Test Synthesis
phase HAVE been merged into this report.

Functional Variations fort
DZ__xLEXNDs-START ANAL AND SCFOUND

1. if START ANAL and SC FOUND
then DEW LEE END.

2. If not STARTANAL
(and SC FOUND)

then not DEY LZX END.
3. If not SC FOOTD

(and START ANAL)
then not DzELEEEND.

Functional Variations fort
SC ERRORt-START ANAL AND not SC FOUND

4. if START ANAL and not SC FOUND
then SC ERROR.

S. If not S-TAR' ANAL
(and not SC FOUND)

then not SC ERROR.
6. if SC FOUND

(and START ANAL)
then not SC ERROR.

Functional Variations for:

BBEGNT EVAL: -DEZ8 E END AND AS FOUND-8E
7. It DEF LXX END and AS FOUND RE

then DGm iT rVAL.
S. If not DE ILEmE w

(and AS iOUND 33 NAS~ed)
then not m NT EVAL.

9. 1U not AS FOUND 33
(and DEF LEE END)

then not 330 ETEAL.

Functional Variations for:
ASERRORt-DEWLZE_ ND AND not ASFOUND-=

10. If DRY LZ Z.ND and not AS FOUND E
then AS ERROR.

11. If not DEF LEx END
(and not AS FOUND BE NASKed)

then not AS RROR.
12. if AS FOUND 33

(and DE_ LEE ZND)
then not AS ERROR.

omtest 4.0(UUA) #740-OOO VUARIMW AMeLTIzI Pase Output - I -

Figure 19-2. SoftTest Variation Analysis Phase Output

19-9

SoftTest PART II

11/06/92 0400p.a. Ds \CUTCBG\IDLA\EZXICON.POV

functional Variations: C-Z Graph for 4.1$,exical Pattern Notation 0

Functional Variations fort
VALID CaHl -3. NT EVIL AND C _EQ WLET

13. If BG NT ZVIL avnd CMl QLET
then VALZD Cal.

14. If not SSG T EVL
(and CaQ..LxT iBASKe)d

than not VALID CHl.
15. if not CH1I•_ZTRl

(Iand M_ XT RvAL)
then not V;LID aC1.

Functional Variations for:
CHi ERoRs,-DG NT EVIL AND not CHiZQLE

16. If EGE NT EVAL and not c31EZQ_LE
then Cl EilROR.

17. If not DEC NT EI
(and not CalBN_LET MUaed)

then not CHl E-ROR.
18. If CHlQLET

(and DUO NT EVIL)
then not Ca1 ERROR.

Functional Variations fort
VALXD-,Tt-VALID C91 AND BUD CS VAL AM LL.LT IM AND not DUD US

I9. If VALID-Cal and SUB-C_¢VaE and not DUBs Uand
LL-LT1LN

then VALIDNT.
20. If not VALID ull

(and SBUDCi VAL NAS~ed and not DUD-9 UASY amlend LL-LT iLKF
MiSled)than not VALID NT.

21. If not SUB CVAL
(and VALID &[I and not DUD-US and LLL?--L)

then not VALID NT.
22. If not LLLT _IK

(and VALID Cal and SUD Ca VAL and not DUD-US)
then not VAEIDnMT.

23. if DUB US
(and VALiD Cml and mUcD aVL and LLL?•I•)

then not vALrD "T.

Functional Variations for:
UBUD OAR EM:-VALZHID CAlMIE not SUB Ca-VIL

24. If VALID C€l and not BUD CaH-VL
then SBU CR 2M.

25. If not VALID Cal
Iand not SUB C VAL MaSd)

than not SUBE mR i0.
26. *if sBU VaVL

SofWlimt 4.0(1TA) MT4-000 VANIIM ANALYSIS Phase O@tput - 2 -

Figure 19-2 continued: SoftTest Variation Analysis Phase Output

19-10

0 PART II Sof tTest

11/06/92 o4soop.m. D S CU3TM\DALZIcaM .Pov

Functional Variations: C-E Graph for 4.1t Lexical Pattern Notation

VALI Z_ -BGREEVAL AND QS_IVLID AND VTALID AMN DD VALID AD SRA VALID AND
BRK VALID

129. if B•M REEVATL and QS VALID and VS VALID and DD VALID and
BRA VALID nd BRRK VALID

then VALID RE.
130. if not aEEEVMAL

(and QS VACLD and VS VALID aAd DD VALID and BRA VALID and
a VALI)then not VALID-RE.

131. If not Q8 VALID
(and BZG EEVL and V8 VALID and DD VALID and R VALID

and ORRK _VID)
then not VALID RE.

132. If not V3VALX,-
(and BE•_ REVA and QS_VALID and DD VALID and BRA VALID

and IRK VALID)
then not VALID- Z.

133. If not DD VALID
(and BEG RU -EVL and QS VZLID and Va VALID and BRA VALID

And ,RK.VALID)
then not VALID RE.

134. if not IRAn VALID
(and mGz •r•VL and QB VALID mid VZ VALID and DDVALID and

IRK VALID)then not VALID gI.
135. If not BIRK VALID

(and 1,EG ME ILRVA and QI VALID and VB VALID and DD VALID and
NR wVALID) then not VALIDrE_.

Functional Variations fort
VALID LXX:-VALD RE

136. if VALID RE
then VA•LD LU.

137. if not VALIj RE
* then not VALID LUZ.

Functional Variations fort
DO MZlTt-VALID LEX

138. If VALID LZX

then DO NEX.
139. if not VALID LEX

then not DO-NUT.

- There ver" NO Infeasible Variationu.
S-3 There were NO 0W1ESTABZL Variations.

loftTrt 4.0(lETA) f1T4-000 -O T VADIMNIM ALYSI, Phas Outpt - 11 -

Figure 19-2 continued: SoftTest Variation Analysis Phase Output

19-11

Softfest PART 11

11/06/92 04,Olp.m. Di \CV3!C8inOD\I L3ZIC0U.?0!

Test Synthesis Output: C-8 Graph for 4.1. LXAICal Pattern Notation

(Formats RcRodeRWMIUU NoN treamlined)ILL ff I en1siveTC*
(IN, Synthesis of KIM tet spoci~fied.I

p15- Expanded-SCRIPT Test Cases requested.)

TMS CanE Is

Cause(s) *
Begin the Lexical Pattern Notation Checking
A smii-colon was found

Effect(Us)
a smii-colon was found-define an the end of the lexicon

Cause(s):
The hAssign symbol was found before the end of the lexicon

affect(s) a
Non-terminal defined-Begin Ron terainal syntax check

cause(s):
The first character of the Ron terminal in a letter

Effect(s)l
The first character of the Ron terminal is valid

Cause(s):
The subsewent characters In the HT are valid
The UT exupression is loes than or equal to one line long

Xffect(s)t
The Son terminal expression is valid

Cause(s)l
The reqular expression contains one or more characters

Effect(s).I
Begin the RhOULRR EZXPZSSION syntax evaluation

Cause(s),
There in one or more quotations symbols in the RE
The quotation symbols balance

Effect(s),
The quotation symbol syntax is CK

cause(*)$
There is one or more characters within each set of quotes

uffect(s)l
The Quotation Symbol syntax and contents are valid

cause(s):
There is one or more VB alternative searators in the JM
There is one or more characters on the left side of each VE
There is one or more characters on the right side of each VE

affect(s).
The Vertical Bar Syntax and contents are valid

Saftest 4.OCUITA J aT4C-090 2E9f SIMFEZ5X Phase Offtyst- -

Figure 19-3. SoftTest Test Synthesis Phase Output

19-12

PART II SoftTest

11/06/92 04:0p.m. D sCUST¢\I3DALR3ICOO. P0T

Test Synthesis Outputs C-JF Graph for 4.1: exlz•al Pateezn Notation

Cause(s)s
Thaer is double dot notation in the R
The characters on the left side are in mingle quotes
There is one or more, characters on the left side of the DO

Effect(s).
The left side of the DD is VALID

CaQus(s) t
The characters on the right side are in single quotes
There is one or more characters on the right side of the DD

affect (a) a
The right aide of the DD is VALID
The double dot syntax and contents are valid

Cause(s)t
There are one or more braces in the BE
The Bracem in the Rl balance
Ther* are one or more characters within the braces

Zffect(s)l
* The Braces syntax and contents are valid
not Display the UNBALANCED BRACES error mosnse
not Display the EPTY BRAUMS error message

Cauae (5):
There are one or more Brackets in the U
The Brackets in the RE balance
*There are one or more cbaracters vithin the braces

Effect(s)s
The Bracket syntax and contents are valid
The regular expression is valid
The LEXICON Is VALID
Begin checking the next lexical statemant

Soure•t New teat

SoftTeat 4.O(3hTA) 1T40-000 2M SNMMZU Ptase Outpt - 2 -

Figure 19-3 continued: SoftTest Test Synthesis Phase Output

19-13

SoftTest PART 11

11/06/92 04sOlp.m. :\U!uKDL3ZO.0

Test Synthesis outputs C-8 Graph for 4.1s Zexical Pattern NotatIon

TEST CaSn Is I

Caufse(s):
Bogin the Lexical Pattern Notation Checking
a semi-colon was found

Uffeatis)s
A semi-colon wasn found-define as the end of the lexicon

Cause(s):I
The kssign .symbol was found before the and of the lexicon

affect(S) a
Non-terminal defined-login Non-term~inal syntax check

Cause(s) I
The first character of the Non terminal is a letter

affect(a) I
The first character of the Won-terminal is valid

Cause(s) I
The subseqsnt characters in the XT are valid
The HT exapression is loes than or equal to one line long

Effect(Bs)
The Non terminal expression is valid

Caseo(s).
The reqular expression contains one or more characters

3ff act(O)l 0
login the UDOULlA EXPVESSION syntax evaluation

Cause(s):
There is one or more quotations symbols in the 33
The quotation symbols balac

affect(s) I
The quotation symbol Syntax is OR

Caeso(s):
There is one or more chax actors within each set of quotes

affect($)$
The Quotation Symbol syntax and contents are valid

Cause(s) a
There is one or more vI alternative separators in the U3
There is one or more characters on the left side of each VS
There is one or mare characters on the right side of each VI

Effect(s):
The Vertical Mar syntax and contents are valid

Cause(a):I
There is double dot notation in the ma
The characters on the left side are in single quotes
There is one or more characters on the left side of the DD

Sofflest 4.OIXTA) UT40-OS0 MIST STEUSSIN Phase output -31-

Figure 19-3 continued: SoftTest Test Synthesis Phase OutpuW

19-14

PART II SoftTest

11/06/92 04: Olp.m. DI ,CUW3•EONzDA.IC\M3Zl.POT

Test Synthesis Output: C-9 Graph for 4.1: Lexical Pattern Notation

ffect(I) I
The left side of the DD is VALID

Cause(s):
The characters on the right side are in single quotes
There is one or more characters on the right side of the DD

affnet(Bsa
The right side of the DD is VALID
The double dot syntax and contents are valid

Cause(s)I
There are one or more braces in the AN
The Braces in the 23 balance
There are one or nore characters within the braces

affect(S)1
The Braces syntax and contents are valid
not Display the USBALANCRD RACZS error mlsage
not Display the ZKPTY BRine error mossage

Cause(s)l
There are one or mor Brackets in the 33
The brackets in the BE do not balance
Ther• are one or more characters within the braces

Effect(s):
not The Bracket syntax and contents are valid
Display the IBTALAhCRD VRAC3TS error iessage
not Begin chocking the next lexical statement

sources New test

leftfltt 4.(KSTA) @UW-O-O 2M lTM2• SZS Phase Output - 32 -

Figure 19-3 continued: SoffTest Test Synthesis Phase Output

19-15

SoftTest PART II 1

11/06/92 04sOlp.m. Dt \%CUVIUT G\ZDA\%z3IOC.POT

Test Synthesis Output$ C-N Graph for d.2t Lexical Patteozn otation •

-- > For n - 25 Primary Causes, then
-- > 2-n a 33,554.432 T•RZDoT'CRL Kazi-mm Number of Teat Cases.

-- > 8oftTest generated 18 Test Cases, which yields a
--3 1,864,125 to I Test Came Compressoan Ratio.

-3 SoftTest generated 139 1unctioal1 Variations, which yields a
-3 a to I Punotional Variations to test Case Campresiosn Ratio.

-)m Test Synthesis 21apsed Times 7 K7iutes

6sftiMt 4.JWUT*A) #PT40W-M U•S 1NT53S3 Pase Output - 33 -

Figure 19-3 continued: SoftTest Test Synthesis Phase Output 0

19-16

0PART 11 SoftTest

* 11/06/92 O
4
:Olp.m. 9, ~cIS!=SXDALhh!ccU POT

Toot Synthesisu Outputsa C-9 Graph fezr 4.*1# LOSzcla. Pattern Notation

91116 - tlmtnises of KU tests spswiffed.)
Test ease vs. Functional Variation COWMMU IUhZ

A
a

I TITTITIT?
A TTTTMrMEME11111E
T SEEEEE'SS IT$ 2

oITITITYTI111111111
1 123 45 &78&9 01 a 3 4S67 a

I 1K
3 X
' x

I x

a x

*11a K xxxxxx

13X KRRKRKKKKKRR
14 K K

17 K K

20 K KRX
21 K

*2 K

24 K
as x RK

30 K

32K K KKKKKEKKKK x x
33K KKKRKRIK
34 K 9 xKKx

36 XKxxxx

392 X KIRKx
40 K
41 x x
42K EKIKI K KERR

*43 K xxI K

45 K

47K xRI K KIK

49 K K I

521 K IR

* 3 x
54 K

K551 X RI I I56K x I

Figure 19-4. SoftTest Functional Variation Coverage Muatrix

19-17

SoftTest PART 11

?I X
73 X X
74 X
73X XXXIX
76 X
77 X
?a X
791X X X XIX X X X X
SO1 X
SI I
82 X
SIX KXXIXIX
84 X X X XI X XIX
as1 X

36 II X I
87 X I
84 X
89X XII XI

921 X1 XXII 0
93 1

94 X
951 X XX

96 X X XXIX
X9 X XX I

100 X
10i X
103 I
104 x X XX XXX X
1051X X X XIX X XX I
106 I I
107 I XI I

109 1
1101 XXII I

112 1
1131 I XXXIX
1141X X X XI

11 1 X
117 X
118X 1XXX

1201X X X XIX X X XI
121 I X
122 X XX I

124 I
181 X XIIIX
126 I
12? 1
1231 xI X XXIX
1291 X
130 X XX XIX 0131 I
132 1
133 1
134 1
135I
1361 x1

1311 1
in it X XX IIKX I111 11

VII 2jj~002j j2 j2 ,2j224 4 4 4 4 4 4e 4
TOT 5 23 23 33 3 324 3 3 5 5 5 55

SeltTest 4.G(UETA) 9314-OW 2M3 SgMrMMX Phaus Output

Figure 19-4 continued: SoftTest Functional Variation Coverage Matrix

19-18

PART II SoftTest

11/06/92 04z01p.n. D V\CUST•SQ\DA\MLZZCOU.POT

Test Synthesis Output: C-Z Graph for 4.1s LZmiaal Pattern NoCstLon

[01 a SItknsfs of KW tests q*cfflod.d
Test Came vs. Node Name DUPIMT!O3I OMIXZZ

TT T TTTT
TT ?TTTTIEEEIEREEE
EE EEEE ISSS$SS
SSI'' sISIPISIS SISiTtISST38TIST8TT8 ISISTTfi i T TTT 'TT r TV 11 fI111W

UWOE-NAE 1 234 56789 01 2 34567

CAlUES:
STAITAIIAL T FT F T T T T 7 T T T I T T 7 T

SCC•iN I T F F T T T T T T T I TT T T T I
AIFOJW_K T FT ITT TT T TT TTCiNIJ_E.LET T F T TT" T T T T T T T T

U.IVUALIT 1 T T T T T T TT
a F F F FF F FFFFFF

LLJT_ILNT F TT T T TTTT
"UT IT FT IITTIT

2 hIT F T FTFTTT T TIGLUL T 71T T 7:T T F IFT T T,
ITTTT FTTIrT

TT F11 T F I T TTI
VS0 LS COT T TT IT T T FI T F Tr TT
vo0_[S~cwT ITr T T F T I TDSOI-- uT T T I I TFTT T

T T T"T T T T F F ITTF
331T F TTTTTT

161910 TT TiTllTT? IFTITI?TS" I T I TFTTTT

MIRAI Til F T T TTF

BQJclU T T I T I IFTT

EFFECTS:
40I P LllS T F F f T T T T T T 1 T T T T V T T
C(bA) SC1111MF fTF F FF F FF FFF F FF FF
4 S.0811pIK pVAL T F f F P T 1 7 T T I r V T I T 7
(de) AS5ERUCSF FffI FIFF FF F FFF FF FFF

_,SSP VALIDCI T ffFTTTi ;TTT TT
(Obs) CNIEb= F FffFFI F F FF F FFFF FF F
4 VIT T F T F F FTFTITT TTT
(obs) S CIhW_"S F I # I F F I F F F F F F F F # F F
(obs) S..UIF ff FFFFT F rF PF FFF
(obs) h_0EFF ffFF F T FFFFFFFF
4S O0316.3 VAL F T T F F F F F F I T T I T T T T
Cobw ALLUU~ F F f F F F F PF T F F F F F F F F

082 40. T F T T T T 7 1T F FF TF T 7 7T
O as_71lT FFtT T 7 T F FFTF T 7 1T

01_2 .F FF F FTI F FF FFF
O aVsSID T I TTIT T F77F TT

(Cob) UBLSJNF fI f f f F FT F FF

(obs) "S.NF f fI FF F F F FFFCobs)1 W_-12 TF ff111TT F FIF TFFTTF
Ow VVlI I F ITI FFFFFF PT F FF FF

(iur 1V-I5.F of11f1fF Tt Fa s N m

Cobs) DOLSNFWA I I FIFFFTTF
Cobs) *qLS M F f ffIf f fF7F FIF TFIFF

Figure 19-5. SoftTest Test Case vs. Node Name Definition Matrix

19-19

SoftTest PART 11

(h)msm f f f ff F IF FPF FFF
CaOs) Dq.8!NF f ff f ff F F FTF F F~

40 MA-12 FT F F F F F VTFP FF
40SP .AVALI T T lT 711T FT FtF 7 7tF
Cabs) GNAWUBF ff IffI FT fFPPPFF F
C(s)lRAGeTYmlXF f f fff F F IF F F F
40 INK-1I r T ITT T VF F FTT ITiF
400 W5E12F FT VF VF F FT F F FIF FF
40Mo WEVAUDISIT I I IT I F7F F T I I
NOb) UhIBEWN F Ifff If F T F FFF PT
(4103WNEEJP1YUN lf ffff F FT F F FFF
4008b VALIDJU 7 F F F FPTFIF F F F FF
402b, VAUDLIELX I #FF F FI F FF F F F

Loftlost 4.0SIUTA)5T40-COO 231W SUIMURST Phase output

11/06/92 O4a0lp.u. 3: CU2T=\ZDA\L31IcCC.P0!

Test SYftthesis QutpUt: C-Z Graph for 4 .19 LOzIC41 Patter Notatlan

For Fn. a2 Primpy Canes, then
2-~ n u 33,554,4U~ TAEOSTICAL No.1mm W~t Of TOsM CAMe.

*. ot tiest seneated IS lest Cams, which ylotdo &
- 1,864,135 to I 2est case Coopeessi~o Ratio.

* Loftiest senerated 139 Puciorati Verfatferm, which VieldB a
-'8 to 1 functlosal VarLations to Test Case Campression Ratio.

t- est l~ntmise1toElpsed Tim: 7 NIszteso

Loftiest 4.CLITA) OI40-MS ZBST SWZIMS1 Phase Output

Figure 19-5 continued: SoftTest Test Case vs. Node Name Definition Matrix0

19-20

PART 11 SoftTest

11/30/92 12s30p.a. Do %C8!=GIDAIZZICM. POP

cauq&-If fect Graph fort C-N araph for CI .11 C&eIa Pattern NotatIOn

v-VAL
U-

WX I

A DIN

19-2

SoftTest PART 11

v~r
ALOVA A OSE

L N~f

VALI VALI DOLNI~*--il- tA 0jEU OLIE IXT
x0

p00 Le 0C

$_IN A SYA -A flo:C LE
a L H~

DOLL 7F

00 0.

-- A 0 AL

00

1T v

MA

V-00

Figure 19-6 continued: Soft Test Cause-Effect Graph0

19-22

PART II SoftTest

SoftTit 4.0(PTA 3 •ST44-O00 PXZM!13 PX3SEiZ•O•W Phase Output

Figure 19-6 continued: SoftTest Cause-Effect Graph

19-23

SoftTest PART II 1

11/30/92 12:12p.m.

Functional Requirement Report File •

Filename : \CUSTCEG\ZDA\•ZZXCON.DOC

This document was extracted from SoftTest-generated data using
the following file and format specLfications:

Ds \CUSTCG•XDA\LEIIOON
Created/Last Modified: 11/06/92 04:01 p.m.

Format: NoModaNAMBS I NoRAW(Streamlined) JAILLeffects I ZXTens~v*TC
IN, - Synthesis of NMW tests specified.
51 3- Epanded-SCRILT Test Cases requested.

NOTEs This document was created using "SoftTstrt: a Computer
Assisted Software Sngineering product from gender a Associates
Inc., Larkspur, California. SoftTest generates test case output
based on user-provided functional requirements specifications.
Bamed on these specifications, the following Specification Document
baa been prepared.)

Functional Specifications fort C-U Graph for 4.1: Lexical Pattern notation

1. 17F Begin the Lexical Pattern Notation Checking
AND A semi-colon was found

TEEN A semi-colon was found-dofine as the end of the lexicon.

2. IF Begin the Lexical Pattern Notation Checking
AND A semi-colon was not found

TEN Display the NO SEMI-COLON FOM error message.

3. 1F A semi-colon was found-define as the end of the lexicon
AND The Assignsymbol was found before the end of the lexicon

TE Non terminal defined-Begin Non terminal syntax check.

4. IF A semi-colon was found-define an the end of the lexicon
AND The Assignsymbol was not found

THEN DLplay the NO ASSIGNI4NT STNBOL error message.

S. IF Non terminal defined-Begin Non terminal syntax check
AID The first character of the Non terminal is a letter

TEEN The first character of the Non terminal is valid.

6. IF Non terminal defined-legin Non terminal syntax check
AID The first character of the Non terminal is not a letter

THEU Display the INVALID FIRST NT CRRACTnR error message.

7. IF The first character of the Non_termiaal is valid

leftfest 4.o(UKTA) T4O-O000 FutLs al Wnurememt Report File - 1 -

Figure 19-7. SoftTest Functional Requirements Report

19-24

0

PART II SoftTest

11/30/92 12:12p.m.

Functional Requirement Report File

30. IF (There are one or mare Brackets in the RE
AND The Brackets in the RE balance
AND There are one or more characters within the braces)

OR (There are no Brackets in the R3)
T The Bracket syntax and contents are valid.

31. Z1 There are one or more Brackets in the RE
AND The brackets in the RE do not balance

TIEN Display the UxRhLACD BRAMCTS error message.

32. Z1 There are one or more Bracket. in the RE
AND Ther are no characters within the braces
THIM Display the HMT BRAMTS error message.

33. IF Begin the RZGUL•R EXPRSSION syntax evaluation
AND The Quotation Symbol syntax and contents are valid
AND The Vertical Bar syntax and contents are valid
An The double dot syntax and contents are valid
AND The Braces syntax and contents are valid
AND The Bracket syntax and contents are valid

TEE= The regular expression is valid.

34. IF The regular expression in valid
THEN The LEXICOH 18 VALID.

35. 17 The LEXICON IS VALID
THU Begin checking the next lexical statement.

in addition, the following constraints meut be applied
to the above specifications&

1. WON NOT Begin the REMULAR EXPRZSSIOU syntax evaluation
T the following condition(s) are INDrTUERTIITts

There is one or more quotations symbols in the 2E
There is one or more VB alternative separators In the RE
There is double dot notation in the RE
There are one or more braces in the Rl
There are one or more Brackets in the 1E

2. WHEN NOT A semi-colon was found-define as the end of the lexicon
THU the following condition(s) are MIDTMUATZo

The AssLgnsymbol was found before the end of the lexicon

3. WREN NOT Non-terminal defined-Begin non terminal Syntex check
THEN the following condition(s) are TiD TnOfUATE:

The first character of the Nonterninal is a letter

sofflwt 4.HIUTA)3 O40-000 htactioeal Pequiremeat Report Vile - 4 -

Figure 19-7 continued: SoftTest Functional Requirements Report

19-25

SoftTest PART II

11130/92 12s12p.m.

Functional Requirement Report File

4. W331 NOT The first character of the Ron terminal is valid
TMN the following conditionis) are ZND3TURMINR• T:

The aubseqent characters in the HT are valid
There in a DOUBLE UNDgRSCORN in the HT expression
The ST exapresmion in less than or equal to one line long

S. UE ROT The son terminal expression is valid
THEN the following condition(s) are INDETEMXINATE:

The reqular expression containa one or more characters

6. W1 There is no quotation uysblola in the RE
TIER the following condition(s) are IMDUTUZNUMft

The quotation symbols balance

7. WORK NOT The quotation symbol syntax in OK
TENR the following condition(s) are !NDSTIMRTU s

There is one or more characters within each set of quotes

8. M NOT There is one or more Vs alternative separators in the R3
TMER the following condition(s) are 1ZDOTER IUATEI

There is one or more characters on the left aids of each VS 0
There is on or more characteta on the right side of each VS

9. MW There is no double dot notation in the 33
TIER the following condition(s) are IRD3TE3NZUAT1a

The characters on the left side are in single quotes
There in one or more characters on the left aide of the DD
The characters on the right aide are in single quotes
There is one or more characters on the right side of the DD

10. WER Thee are no braces in the RE
T the following conditLon(s) are INDETERKITs

The Braces in the 33 balance
There are one or more characters within the braces

11. MM There are no Brackets in the 33 0
TIE the following condition(s) are M3D33IUR t

The Brackets in the RE balance
There are one or more characters within the braces

Softflst 4.G(11TA) SU40-O00 Fua c"al Requirment Report Vilo - 5 -

Figure 19-7 continued: SoftTest Functional Requirements Report

19-26

PART 11 SoftTest

11/30/92 12:13p.m.

2167A Template Document File

vilenames Dn \CUSTCZG\IDA\LZXXCOU.TZT

This document template was extracted from SoftTest-generated data
using the following file and format speclficationrs

D, \CUBTCZM\z=A\LZXzCMc
created/Last Modified: 11/06/92 04s01 p.m.

Format: MoI~od.NAM ISo130 (Streamlined) JLLeffectslZKTeneiveTC
.N. - Synthesis of NMW tests specified.
181 - Nxpended-SCRXPT Test Cases requested.

4.1 C-2 Graph for 4.1# Lexical Pattern Notation

I IOh This document was created using "SoftTest s a cemputer
Assisted Software Sngineering product from bender G Associates
Inc.& Larkspur, California. SoftTest generates test case output
based on user-provided functional requirements specifications.

It is imperative that AM of the tests specified by SoftTest be
successfully run using the SANJ version of any program module(s)
under test in order to smsure that full functional coversge is

achieved.]

Sefftle 4.0(31*) 370-000 2167A T emplat. Document Vile - 1 -

Figure 19-8. SOftTest 2167A Document Template

19-27

SoftTest PART 11

11/30/92 12sl3p.m.

2167A Template Document File0

4.1.1 TZST CAES LXXZDMO-01

This is a functional test cawse intended to demonstrate that the

requirements listed in the next section perform correctly.

4. 1. 1.* 1 LZXIOO-01 RZQUZAZNWNT TRACZANZLITY

This test came will test the following functional requirementa:

1. 17 Blegin the Lexical Pattern Notation Checking
AND A semi-colon was found
0W A smi-colon was found-define as the end of the lexicon.

2. Xl Begin the Lexical Pattern Notation Checking
AND A semi-colon was not found
Tim Display the 00 UNM-COLOIK FOUND error measage.

3. 17 A semi-colon was found-define as the end of the lexicon
AND The Assign symbol was found before the end of the lexicon

ToRM Non-terminal. defined-Negin Non-terminal syntax check.0

4. Xl A semi-colon was found-define as the end of the lexicon
anD The Assign-symbol was not found

TH Diplay, the NO ASSZIUNMIT STIKOL error mesage.

5.- Xl Non terminal defined-Degin Son terminal syntax check
AND The first character of the Non terminal in a letter
TM The first character of the Hopnterminal is valid.

6. *Y Slonterminal defined-Negin Non terminal syntax check
AND The first character of the Non terminal Is not a letter
Ton Display the xNYALI Wirru NT c~acT3 error message.

7.* Xl The first character of the Non terminal is valid
MID The eubeeqent characters in the NT are valid
MID The NT exspceusion is less than or equal to one line long
AND NOT There is a DOUBKE UDRMSCOMn in the NT expression

TEEN The Non terminal expression is valid.

6. 17 The first character of the Non terminal is valid
AND One or more of the subsequent NT characters are invalid

TUEX Display the INIVALID SUNSUQUEN CUAMTZX(s) error message.

9. IF The first character of the Non-terminal in valid
AND There is a DOODLE UND3USOONN in the NT expression

TWR Display the DOODLE UNDRSCOON error message.

10. 17 The first character of the Non terminal is valid
AND The NT expression is more than one line long
TME Display the NT 3Z1EES5XOU 12 TOO LONG error messaget.

Seftlet COMU~A) X40-6000 2167A Template Document VMe -2-

Figure 19-8 continued: SoftTest 2167A Document Template

19-28

PART II SoftTest

11/30/92 12s13p.m.

2167A Template Document File

35. F (Thoer are one or more braces in the RZ
AM The Braces in the RX balance
AMD There are one or more characters within the braces]

OR (There are no braces in the I3]
* TN The Braces syntax and contents are valid.

36. IF There are one or more braces in the R3
AD The Braces in the 32 do not balance

TU Display the 53A3LRCZD BRACUS error message.

4.1.1.2 Lrzzoon-0l ZIKZTZALZATZIO

4.1.1.3 LXIOS-Ol TST INMP•T

* 1. Begin the Lexical Pattern Notation Chocking
2. A semL-colon was found
3. The Aeeign_aymbol was found before the end of the lexicon
4. The first character of the son terminal is a letter
S. The subsoeqesnt characters in the NT are valid
6. The XT ezapression is lses than or equal to one line long
7. The reqular expression contain. one or more, characters
8. There is one or more quotations symbols in the IM
9. The quotation symbols balance

10. There is one or more characters within each set of quotes
11. There is one or moe VS alternative separators in the U
12. There is cam or more characters on the left side of each V3
13. Ther is one or more characters on the right side of each VI
14. Thee is double dot notation in the M3
15. The characters on the left side are In single quotes
16. There is one or more characters on the left side of the DD
17. The characters on the right side are in single quotes
18. There is on. or mare characters on the right i•ie of the DD
19. There are one or more braces in the 3N
20. The Bracee in the IM balance
21. There are one or more characters within the braces
22. There are one or more irackets in the U3
23. The Brackets in the R3 balance
24. There are one or more characters within the braces

4.1.1.4 LMOU-01 3ZPCTU TEST 33SULTS

1. A semL-colon was found-define as the eand of the lexicon
2. Non terminal defined-Begin Mon terminal syntax check

"Softiest 4.0(KTA) 040-000 2147A Templat.e Douement Pile - s -

Figure 19-8 continued: SoftTest 2167A Document Template

19-29

0', , i • a

SoftTest PART II

11/30/92 12:13p.m.

2167A Template Document File

3. The first character of the Non terminal is valid
4. The Non termLnal expression io valid
S. Begin the REULAR EXPRESSION syntax evaluation
6. The quotation symbol syntax is O0
7. The Quotation Symbol syntax and contents are valid
S. The Vertical Bar syntax and contents am valid
9. The left side of the DD is VALID

10. The right side of the DD is VJALZD
11. The double dot syntax and contents are valid
12. The Braces syntax and contents are valid
13. NOT Display the UNBALANCZD BRWZS error message
14. NOT Display the ZNFTY DRUMS error message
1S. The Bracket syntax and contents are valid 0
16. The regular expression in valid
17. The LEXICN IS VALID
18. legin checking the next lexical statement

4.2.1. S LEZICOM-O1 CRITZRIA FOM EVAr ATING RMSULTS

4.1.1.6 LrZrOOK-0l TZST PROCEDURE

Cause(s):
Begin the Lexical Pattern notation Checking
A selm-colon was found

Effect(s),
A semi-colon was found-define as the end of the lexicon

Cause(s):
Tho Assignsymbol was found before the end of the lexicon

Effoct(s)l
Non -terninal deftned-Begin Xon terminal syntax check

Cause(s):
The first character of the Non terminal is a letter

Effect(s)l

The first character of the mn•terminal is valid

Cause(s)f
The subseqent characters in the NT are valid
The NT exepression in less than or equal to one lime long

Effect () :
The Nonmterminl expression is valid

Cause(@)$
The reqular exprssLon contains one or more characters

SettTest 4.(1CTA) tT40-000 2167A !mplats Documet Vle* - 6 -

Figure 19-8 continued: SoftTest 2167A Document Template 0

19-30

PART II SoftTest

11/30/92 121l3p.m.

2167A Template Document File

If fect(s):
Bogin the IZlULAR IPRESSION syntax evaluation

Cause(s):
There in one or more quotations symbols in the 33
The quotation symbol, balance

Iffect(s):
The quotation symbol syntax is OR

Cause(s):
There is one or more characters within each set of quotes

Xffect(s) 8
The Quotation Symbol syntax and contents are valid

Cause() :
There is one or more VI alternative aeparatore in the NE
There is one or moe characters on the left side of each VB
There is one or more characters on the right side of each VB

affect(*)$
The Vertical bar syntax and contents are valid

Naue(s) :
There is double dot notation in the Ra
The characters on the left side are in single quotes
There is one or more characters on the left side of the DD

Iffect(s) I
The left side of the DD is VALID

Cause(s):
The characters an the right side are in single quotes
There is one or mora characters on the right side of the DD

Iffect(s)l
The right side of the DD is VALID
The double dot syntax and contents are valid

Cau"e(s) I
There are one or more braces in the RE
The Braces in the 3I balance
There are one or more characters within the braces

Zffeat(s).
The Braces syntax end contents are valid
not Display the UNIBALA]RND Uth error message
not Display the ZEMTY lEAM error message

Cause(s):
There are one or more Bracket* in the RN
The Brackets in the 22 balance
There are o=W or more characters within the braces

Effect(s):
The Bracket syntax and contents are valid
The regular expression is valid

aftiest 4.0CUIA) rt10-OOO 2167A Template Docment file - 7 -

Figure 19" continued: SoftTest 2167A Document Template

19-31

SoftTest PART II 1

11/30/92 12:13p.m.

2167A Template Document Fi le•

The LhI2•I 18 VAITZD
begin checking the next lexical statsment

Wowt'e 4.0(BETA) ftT4*-M• 2147i'A Wesmplte]Document ti.le- -

Figure 19-8 continued: SoftTest 2167A Document Template

19-32

PART II SQA:Manager

20. SQA:Manager

SQA:Manager is a management information and decision support system for software

testing. Essentially SQA:Manager provides a cataloging system for test documents and in-

ventory items, and a tracking system to record incidents and problems found during the test

process. Problem data is used to forecast quality metrics such as reliability and failure in-

tensity. Cost data is used to report on the cost of testing and the cost of repair. The test pro-

cess supported by SQA:Manager is based on a standard IEEE test methodology. As

marketed, the tool can generate test reports according to the associated IEEE standards, or

to conform with the appropriate U.S. Government standards. The user can, however, tailor

existing formats and create new report formats.

SQA:Robot is a companion capture/playback and comparison tool for MS-Windows

and OS/2 PC environments. It writes test procedures, test cases, test case results and inci-

dents directly into the SQA:Manager database.

20.1 Tool Overview

SQA:Manager is marketed by Software Quality Automation. Based on-site needs as-

sessment audits, this organization also develops custom testing tools. A user hot-line is

available. SQA:Manager has been available since 1990, and has over 100 users. It is lan-

guage independent and runs on IBM PC/AT, or compatible machines, under MS-DOS (ver-

sion 3.0 or higher) with MS-Windows. It also runs under OS/2 and UNIX. A network

version that operates on Novell's Netware and 3COM local area network product is avail-

able. The tool's database implementation is based on Borland International's Paradox com-

mercial product, a relational database in conformance with IEEE recommendations. The

export capabilities of this database can be used to convert SQA:Manager data for use with

other PC applications such as Lotus 1-2-3. Paradox reporting functions can also be used to

extend those of SQA:Manager.

The evaluation was performed on an evaluation copy of SQA:Manager version 2.0 run-

ning on a WIN TurboAT. At the time of evaluation, the price of SQA:Manager was reduced

from $3,500 to $995.

SQA:Manager provides a cataloguing system for test documentation and test inventory

items. It defines an entity-relationship model for the software components under test with

documentation and other data generated in the testing process indexed to this model. Thus,

20-1

SQA:Manager PART II 1

SQA:Manager operates on a database of test-related information specific to a software

product being tested. (Multiple database are allowed so that a separate database can be set

up for individual products.) The database maintains an inventory of reusable test resources,

specifically test cases, test procedures, and testing tools. The specific types of test objects

recognized are as follows:

"• Test Plan. Details the entire testing process, that is, the items to be tested and how,
the resources to be used, and the timeframe within which the testing is to occur. It
provides the links between software components, test cases, and test procedures.

"* Test Design Specification. Details the ways in which a software feature is to be tested
and identifies the specific tests to be used.

"• Test Procedure. The detailed, step-by-step instructions for test setup and operation,
and evaluation of test results.

"° Test Cycle. A series of tests within a release of software.
"* Test Case. A test case is a set of test data designed to achieve a particular test objec-

tive. A series of test cases are run within a test cycle.
"* Test Incident. An unexpected test result requiring analysis and further investigation. 0
"* Test Log. A record over time of the details of test execution, including events for each

cycle of testing. Typically, holds all activities for testing one version of given prod-
uct. Test results are recorded and may reference a test incident.

These test objects can be linked to test items, that is, any software item that is to be tested,
and test tools. This allows, for example, identifying which testing tools are used to run dif-

ferent test cases.

Incidents and problems identified in both development activities and field operation

can be recorded. They are maintained separately. Problems may be entered directly into the
problem database, or by classifying an incident as a problem. Problems are given a sever-

ity, resolution type, and status. They can be assigned to a specific person for resolution and

so support the scheduling of resources for problem repair. Documentation of actual reso-
lution enables accounting of related costs. 0

In some cases, test log, incident, or problem data may be generated by some other tool,
or word processor. If this data is in the form of comma-delimited ASCII text files, tem-
plates can be created that define how it should be imported into SQA:Manager's database.

Various types of reporting are available. For a given test cycle, SQA:Manager produc-

es reports identifying what test cases were run and their results, and the summarized results

of all test cases. For a given test case, the results through all test cycles can be reported.
Cost reports are available for the cost of testing and the cost of repair. General reporting on

20-2

PART II SQA:Manager

problems and incidents experienced is available. Problem data is also used to generate re-

liability metrics using Musa's logarithmic Poisson execution time model. Failure intensity

reports indicate the expected number of failures per unit of time, whereas reliability reports

give the probability of failure-free operation. Both types of report provide additional infor-

mation such as the amount of additional testing time needed to meet a targeted reliability

objective. The accuracy of these estimates depends on the amount of problem data. SQA:-

Manager documentation recommends that the reliability model is only applied if there are

more than 100 problem reports, testers are at least 25% through testing, and the software

under test exceeds 25,000 lines of code. Finally, reports on the software under test, docu-

ments, inventory contents, and test log are available.

Many of the reports are available as either tables, bar charts, or line graphs. Before

printing any predefined report, the user can change the report title and x- and y-axis labels.

Some dozen filters are predefined for both incident and problems reports. These can be

used, for example, to limit problem reporting to problems not yet resolved. The user can

easily prepare templates that generate additional reports, defining the items to appear along

with primary and secondary sorting keys.

Predefined templates are provided for test plans and test design specifications. SQA:-

Manager comes with three prepackaged template groups, as follows:

" IEEE Standards

a. IEEE Std 730, Software Quality Assurance Plans

b. IEEE Std 829, Software Test Documentation

c. IEEE Std 1008, Software Unit Testing

d. IEEE Std 1028, Software Reviews and Audits

"• U.S. Military Standards

a. MIL-STD-480, Configuration Management

"* U.S. Department of Defense Data Item Descriptions and Standards

a. DI-MCCR-80014, Software Test Plans

b. DI-MCCR-80015, Software Test Description

c. DI-MCCR-80017, Software Test Report

d. DI-QCIC-80572, Software Quality Program Plan

e. DoD-STD-2167A, (Excerpt) Defense System Software Development

SQA:Manager includes a set of administration functions. These allow an administrator

to specify the relationships between a product, programs (a logical division of products),

20-3

SQA:Manager PART II f

modules (a logical division of programs), documents, and versions. The ability to reference

a program, or module, from more than one product supports software reuse.

Security is provided by identifying allowable users, each of whom is given a password.

Users are distinguished by organization to allow, for example, identifying problems report-

ed by customers as opposed to those reported by testers. Each user is given a particular set

of access privileges. In the case of problem reporting, for example, a user can be given the

ability to add or change descriptions, set the status, enter resolution or follow-up action and,

for a problem, assign the person responsible for resolution. Setting up for a new project re-

quires establishing a cost base that will be used for cost reporting. Here the administrator

can define an unlimited number of cost codes, each of which has an associated hourly rate.

Finally, the administrator can establish the necessary operating profile, such as the phone

numbers and communications ports to be used with remote communications.

20.2 Observations

Ease of use. SQA:Manager provides a menu-driven interface, where the user may use

either the keyboard or mouse to make selections. Three types of screens are supported: field

entry screens, check boxes, and item selector lists. After a basic function has been selected, S
the tool guides a user through the steps in that function, capturing information through tem-

plates. Where appropriate, a pick list function is provided to display the options for a text

field and allow the user to select from this list. Graphical outputs are available in the form

of bar charts, line graphs, and tables. Context-sensitive on-line help is supported, but pro- S

vides only terse messages.

A programming module is provided to facilitate customizing or extending SQA:Man-

ager. The tool can be customized in several ways. The text in reports and help messages can

be changed, along with field and button labels. The contents of field entry screens and item S

selector lists can be modified. The document templates can be changed, for example, to re-

flect particular organizational or product requirements. As previously mentioned, the for-

mat and contents of reports can be modified, and new report types created. Additionally,

user-defined templates to convert comma-delimited ASCII text files support importing of •

problems, incidents, and test logs.

Documentation and user support. The supplied documentation was well-written and

complete. The Technical Reference Manual provides information to not only customize

SQA:Manager, but to extend SQA:Manager functions and integrate them with other soft-

20-4

PART II SQA:Manager

ware packages. SQA staff were both friendly and helpful. They answered all questions

quickly.

Problems encountered. The installation of SQA:Manager was straightforward. No
problems were encountered in its use.

* 20.3 Recent Changes and Planned Additions

A new version of SQA:Manager running under MS-Windows has been released. A ver-
sion for the DEC Ultrix system is expected to enter beta testing soon.

20.4 Sample Outputs

Figures 20-1 through 20-18 provide sample outputs from SQA:Manager.
0

0

20-5

0"" I

SQA:Manager PART II 1

Test Plan Report - Current Version

Plan ID: ACTIII02PN
Plan Name: AP & AR TEST PLAN
Description: TEST PLAN FOR VERSION 2.00 OF ENTIRE

AP AND AR PROGRAMS IN ACT III PRODUCT.

Version: 2.0
Effective Date: 11/3/90
Author: Beth Jones
Location: C: OCSACT20. PLN

Referenced Specifications:

ID: ACTIII02DS Name: AP a AR DESIGN SPEC

Referenced Software Components.
Product
Name: ACT III 2.00

Program
Name: ACCOUNTS PAYABLE 2.00
Name: ACCOUNTS RECEIVABLE 2.00

Module
Name: CHECK WRITER 2.00
Name: INVOICE WRITER 1.96

Test Plan Report - Revision History

Plan ID: ACTII102PN
Plan Name: AP & AR TEST PLAN
Description: TEST PLAN FOR VERSION 2.00 OF ENTIRE

AP AND AR PROGRAMS IN ACT III PRODUCT.

Version: 1.5 0
Effective Date: 10/8/90

Author: Beth Jones
Location: DOCUMENTATION FILE CABINET
Version Description: FIRST VERSION

Version: 2.0 .

Effective Date: 11/3/90

Author: Beth Jones
Location: C: OCSACT2 0. PLN
Version Description: CONTAINS NEW SECTIONS FOR TESTING

PRINTING OF CHECKS AND INVOICES

Figure 20-1. SQA:Manager Test Plan for ACTIIIO2PN

20-6

PART II SQA:Manager

Test Specification Report - Current

Test Specification ID: ACTIII02DS
Test Specification Name: AP & AR DESIGN SPEC
Description: TEST DESIGN SPEC FOR VERSION 2.00

AP AND AR PROGRAMS IN ACT III

version: 1.56
Effective Date: 12/6/90
Author: Beth Jones
Location: C: OCSACT156. DSN
Version Description: SAME AS VER 1.50 PLUS FIXES FOR

COSMETIC PROBLEMS.

Referenced Procedures:
ID: CHKRUNS Name: CHECK GENERATION TESTS
ID: INVRUNS Name: INVOICE GENERATION

Refereuced Test Cases:
ID: CHKDATA Name: CHECKING DATA PREP TESTS
ID: CHKPOST Name: CHECK POSTING TESTS
ID: CHKPRN Name: CHECK PRINTING TESTS
ID: CHKRPT Name: CHECK REPORT TESTS
ID: CHKSEL Name: CHECK SELECTION TESTS
ID: CHKSRT Name: CHECK SORTING TESTS
ID: INV0001 Name: OPEN INVOICE REPORT TEST

ID: INVPRN Name: INVOICE PRINTING TESTS

Referenced Software Components:

Program
Name: ACCOUNTS PAYABLE 2.00
Name- ACCOUNTS RECEIVABLE 2.00

Module
Name: CHECK WRITER 2.00
Name: INVOICE WRITER 1.95

Test Specification Report - Revisions

Test Specification ID: ACTIII02DS
Test Specification Name: AP a AR DESIGN SPEC
Description: TEST DESIGN SPEC FOR VERSION 2.00

AP AND AR PROGRAMS IN ACT III

Version: 1.56
Effective Date: 12/6/90
Author. Beth Jones
Location: C:OCSACT156.DSN
Version Description: SAME AS VER 1.50 PLUS FIXES FOR

COSMETIC PROBLEMS.

Figure 20-2. SQA:Mmnager Test Specification Report for Test Spec ACTIIIO2DS

20-7

SQA:Manager PART II 1

Test Case Report - Current

Test Case ID INVPRN
Test case Name: INVOICE PRINTING TESTS
Description: TESTS FOR PRINTING INVOICES.

Tool ID:
Requirement ID:

Version: 1.2
Effective Date: 12/5/90

Developer:
Specification Location: C: CASESPECSNVPRN. DOC
Version Description: 2ND VER - ADD NEW PAGE LENGTH ROUTINE
C: CASESNDATAINVPRN. IN
C: CASESRESULTSNVPRN. OUT

Referenced Software Components:
Program
Name: ACCOUNT PAYABLE 2.00

Module
Name: INVOICE WRITER 1.95

Test Case Report - Revisions

Test Case ID INVPRN
Test case Name: INVOICE PRINTING TESTS
Description: TESTS FOR PRINTING INVOICES.

Tool ID:
Requirement ID:

Version: 1.0
Effective Date: 9/10/90

Developer: Mike Brown
Specification Location: C: CASESPECSNVPRN.DOC
Version Description: FIRST VERSION
C: CASESNDATAINVPRN. IN
C: CASESRESULTSNVPRN. OUT

Version: 1.2
Effective Date: 12/5/90

Developer:
Specification Location: C: CASESPECSNVPRN. DOC
Version Description: 2ND VER - ADD NEW PAGE LENGTH ROUTINE 0
C: CASESNDATAINVPRN. IN
C:CASESRESULTSNVPRN.OUT

Figure 20-3. SQA:Manager Test Case Report for Test Case INVPRN

20-8

PART II SQA:Manager

rest Procedure Report - Current

rest Procedure ID CHKRUNS
rest Procedure Name: CHECK GENERATION TESTS

Description: TESTS FROM ENTERING CHECK DATA TO
POSTING CHECKS.

Version: 2.0
Effective Date: 10/30/90

Developer: Beth Jones
Procedure Location:
Version Description: MAJOR REV - ADDS PROCEDURES FOR CHECK

POSTING AND SELECTING TESTS.

Reierenced Software Components:

Program
Name: ACCOUNTS PAYABLE 2.00

module
Name: CHECK WRITER 2.00

rest Procedure Report - Revisions

rest Pxrocedure ID CHKRUNS
rest Procedure Name: CHECK GENERATION TESTS

Description: TESTS FROM ENTERING CHECK DATA TO
POSTING CHECKS.

Version: 1.0
Effective Date: 1/3/90

Developer: Beth Jones
Procedure Location:
Version Description: FIRST VERSION

Version: 2.0
Effective Date: 10/3090

Developer: Beth Jones
Procedure Location:
Version Description: MAJOR REV - ADDS PROCEDURE FOR CHECK

POSTING AND SELECTING TESTS.

Figure 20-4. SQA:Manager Test Procedure Report for Procedure CHKRUNS

20-9

SQA:Manager PART II

Software Items Report
Date: 6/7/92

Product: ACT III 2.00
Program: ACCOUNTS PAYABLE 2.00

Module: DATABASE MANAGER 1.80

Module: CHECK WRITER 2.00
Module: JOURNAL 2.00

Module: USER INTERFACE 1.80
Program: ACCOUNTS RECEIVABLE 2.00

Module: DATABASE MANAGER 1.80

Module: INVOICE WRITER 1. 95
Module: JOURNAL 2.00
Module: USER INTERFACE 1.80

Program: GENERAL LEDGER 2.00
Module: DATABASE MANAGER 1.80
Module: JOURNAL 2.00
Module: USER INTERFACE 1.80

Figure 20-5. SQA:Manager Software Items Report

Test Tool Report - List

Tool ID Tool Name

AUTOT AutoTester
ROBOT SQA:Robot OS/2
ROBOT W SOA:Robot Windows
SOAM SOAManager
TESTPRO TestPro

Test Tool Report

Tool ID: TESTPRO
Tool Name: Testpro
version: 3.1
Vendor: Sterling Software

Purpose: Capture/Playback for MS-DOS

Date Acquired: 6/15/91
Location:

Figure 20-6. SQA:Manager Test Tool Report

20-10

PART II SQA:Manager

Test Log Report

Test Log Name: ACT III VER 2.00 TESTING Test Log ID: ACT3320

Ref'd. Test Procedure:
Description: Testing for Alpha Releases A-H

of ACT III Ver 2.0

Test Cycle Date Time Tester Test Case ID Incident ID

A 12/26/90 08:00 MIKES CHKSRT 1
Garbage in upper left corner.
A 12/26/90 08:30 MIKED CHKPRN 2
Truncated Payee Names (over 40 chars)
A 12/26/90 09:00 HIKED CHKRPT 3
Memory problem.
A 12/26/90 10:00 MIKES 4
Error 202 when AP selected from Main Menu - intermittent
A 12/26/90 11:15 HIKED 5
Typo
A 12/26/90 15:00 MIKED CHKSRT 6
Checks don't appear in descending orderF
A 12/26/90 16030 MIKED CHKSRT 0
Wrong system setup -tests aborted
A 12/27/90 08:00 MIKES CHKSRT 7
A 12/27/90 08:00 HIKED CHKSRT 0
Second run was OK - operator error (I think)
A 12/27/90 10:00 HIKED CHKDATA 10
A 12/27/90 11:00 MIKED CHKDATA 0
A 12/27/90 13:01 HIKED 9
404 Error
A 12/27/90 13:30 MIKED INVO001 0
A 12/27/90 14:00 MIKED INVO001 11
A 12/27/90 16:00 HIKED 12
A 12/27/90 16:05 HIKED CHKDATA 14
A 12/27/90 17:00 HIKED CHKDATA 0
A 12/27/90 17:15 MIKED 0
A 12/27/90 17:50 MIKED 17
A 12/27/90 18:00 MIKES 18
A 12/27/90 18:30 MIKED 20
A 12/28/90 08:00 MIKED INV0001 23
A 12/28/90 09:00 MIKEB INVO001 0
A 12/28/90 19:00 HIKED 21
B 12/28/90 10:00 HIKED CHKSRT 0
B 12/29/90 08030 MIKED CHKPRN 0
8 12/29/90 11:15 MIKED INVPRN 0
a 12/29/90 13:00 MIKEB CHKDATA 0

Figure 20-7. SQA:Manager Test Log Report

20-11

SQA:Manager PART 11

Test Case Summary Report

Test Log Naime: ACT III VER 2.00 TESTING Test Log ID; ACT3320

Ref'd. Test Procedure:
Description: Testing for Alpha Releases A-H

of ACT III Var 2.0
Passed 9
Failed :9

Aborted I
Incidents :17

Elapsed Time :21.30

Figure 20-8. SIA:Manager Test Case Report for Test Case INVPRN

Problems By Repair Person

Mot fix Problem Asgu'd
Date ID Program Name Dev. Short Doeo.

3 ACCO UNT S PAYABLE: 2.00 Checksorting- wrong order
5 ACCOUNTS PAYABLE: 2.00 Checkprinting- Can't use ind checks
6 ACCOUNTS PAYABLE: 2.00 Control Account- selection error
s GENERAL LEDGER: 2. 00 Helep doesn't work
10 ACCOUNTS RECEIVABLE: 2.00
11 ACCOUNTS RECEIVABLE: 2.00 Open Invoice Rpt- last one missing
12 GENERAL LEDGE: 2.00
13 GERERAL LEDGER: 2.00
14 ACCOUNTS RECEIVABLE: 2.00 Postinvoices- missing posting date
15 GENERAL LEDGER: 2.00 CAWIW GL- won't accept 3I(/DD/TY format

1/8/91 2 ACCOUNTS PAYABLE: 2.00 CATNTW Checkvriter- memory error.
1/6/91 7 ACCOUNTS PAYABLE: 2.00 CATHNT Checkrecording- Tasks Menu - in loop
1/6/91 9 ACCOUNTS PAYABLE: 2.00 CKTHYW Chart of Accounts- Corrupted
1/15/91 1 ACCOUNTS PAYABLE: 2.00 CATE!W Checkvriter- garbage
1/15/91 4 ACCOUNTS RECEIVABLE: 2.00 CATEYW Checkdata- Unable to execute line 1232

Figure 20-9. SIA:Manager Problems Table

20-12

PART II SQA:Manager

Fixed Problems Ready for Retest

Problem Submitter's
ID ID Status Fixed Program Module/Subsystem Short
1 MIKES Submitted Check
2 MIKES Assigned ACCOUNTS PAYABLE: 2.50 CHECK WRITER: 2.00 Check
3 HIKES Submitted Check
4 MIKED Submitted Check
5 MIKES Submitted Check

6 MIXKE Submitted Contr

7 MIKES Assigned ACCOUNTS PAYABLE: 2.50 USER INTERFACE: 1.80 Check
8 MIKED Submitted Help

9 MIKES Assigned ACCOUNTS PAYABLE: 2.50 DATABASE WRITER: 1.80 Chart
10 HIKED Submitted

11 MIKES Submitted Open
12 HIKES Submitted
13 MIKES Submitted
14 MIKES Submitted Posti
15 MIKES Assigned ACCOUNTS PAYABLE: 2.50 GL -

Figure 20-10. SQA:Manager Fixed Problems Ready for ReTest

Repair Cost

PrOgram Name: ACCOUNTS PAYABLE
Version : 2.00

Cost of Repair

Date Problem ID Developer ID Time (hours) Cost

12/28/90 1 CATHIW 0.00

12/28/90 2 CATHYW 4.00 84.00

12/28/90 3
12/28/90 5
12/28/90 6
12/28/90 7 CATHW 1.00 21.00
12/28/90 9 CATHIW 2.00 42.00

Total 147.00

Figure 20-11. SQA:Manager Cost of Repair Table

20-13

SQA:Manager PART II 1

Test Log Report

Test Log Naae: ACT III VER 2.00 TESTING Test Log ID: ACT3320

Ref'd Test Procedure:

Description: Testing for Alpha Releases A-H
of ACT III Ver 2.0

Cost of Testing

Date Time Tester Time (hours) Cost

12/26/90 08:00 MIKED 0.50 10.50

12/26/90 08:30 MIKED 1.00 21.00

12/26/90 09:00 MIKED 0.75 15.75

12/26/90 10:00 MIKED 0.50 10.50

12/26/90 11:15 MIKED 0.25 5.25

12/26/90 15:00 MIKES 1.50 31.50

12/26/90 16:30 MIKED 0.50 10.50

12/27/90 08:00 HIKED 0.25 5.25

12/27/90 10:00 MIKED 0.50 10.50

12/27/90 11:00 MIKED 2.00 42.00

12/27/90 13:01 MIKED 0.75 15.75

12/27/90 13:30 MIKES 0.50 10.50

12/27/90 14:00 MIKED 0.75 15.75

12/27/90 16:00 MIKED 0.75 15.75

12/27/90 16:05 MIKED 0.25 5.25

12/27/90 17:00 MIKED 1.00 21.00

12/27/90 17:15 MIKED 1.00 21.00
12/27/90 17:50 HIKED 0.50 10.50

12/27/90 18:00 MIKED 0.25 5.25

12/27/90 18:30 MIKED 0.25 5.25

12/28/90 08:00 MIKED 3.00 63.00

12/28/90 09:00 MIKED 0.75 15.75

12/28/90 10:00 MIKED 0.50 10.50 0
12/28/90 19:00 MIKED 1.50 31.50

12/29/90 08:30 MIKES 0.50 10.50

12/29/90 11:15 MIKED 0.30 6.30

12/29/90 13:00 HIKED 0.75 15.75

Total 442.05

Figure 20-12. SQA:Manager Cost of Testing

20-14

mmmmm m mmmmm Im I ilili~i I0

PART II SQA:Manager

Cost of' Rep'r for ACE []I Versi 2. 00

- - - - - - - - --- --- - - - - - - - - - - - - --- --

S 147) - --................ - -.-.....- "

I,

Ll --. .-: -.. -. . .--. . .-• -
W2-- - -------- -- -

*l -_ -__ - -l- -- -4- ---- +- -
£143/Ujw ww" LVI 1/Ifl 1/142 IJ/3w 1/4.11 1IM

Date

Figure 20-13. SQA:Manager Cost of Repair Graph

Tetl I , osts for ACT [II Ver-s ion Q. 00---------------------------------T--t. ------..ss.orAT-..Vrso.2

S----- --

//

Ss

*i 4 - - - - I-+ - . . .

(ft / -- - ...

201

0, W2-

564 l - ii . ..

* /l
* at--- .. . - /

.• , •.•,. _•z/##-. I:.. -.
Uiii,- ll
•lt. U ll~t ~ f. m L J 21U IIN f'1 £l3

Date

Figure 201-14. SQA:Manger Cost of Tesing Hisogrmm

20-15

SQA:Manager PART II

Reliability Analysis
Poisson Geometric model

Date: 06/07/92

Program Name: TESTPROGRAM
version: 1.OOA

Total Testing Time (CPU hra): 0
Total Failures Reported: 137
Target Reliability: 0.80 /1.0 CPU hours
Confidence Interval: 900

Present Reliability
Low Limit: 0.00 /1.0 CPU hours
Most Likely: 0.00 /1.0 CPU hours
High Limit: 0.00 /1 0 CPU hours

Additional Time Needed for Execution
CPU Time (hrs) Calendar Time (days) S

Low Limit: 224.8 936.9
Most Likely: 276.1 1150.4

High Limit: 357.5 1489.8

Additional Failures to be Found
Low Limit: 340 failures

Most Likelyr 428 failures
High Limit: 568 failures

Reliab1ilty for ACT I I Version 2. 00

-- - -- -- -- - -- - - -- - ---- •------ ------ iv

Objci. i e

& , - - - - - - - .- - . . -- -- - - - - - - - - - - - - -. - - - - - - - - - -

a3

as
a 42 In Iai 2

Figure 20-15. SOA:Manager Reliability Analysis Table and Graph

20-16

PART II SQA:Manager

Failure Intensity Analysis
Poisson Geometric model

Date: 06/07/92

Program Nawe: TESTPROGRAM

Version: l.OOA

Total Testing Time (CPU hrs): 0
Total Failures Reported: 137
Target Failure Intensity: 0.006000 failures/CPU sac
Confidence Interval: 90%

Initial Failure Intensity
Low Limit: 0.422475 failures/CPU sac
Most Likely: 0.598194 failures/CPU sac
High Limit: 0.832898 failures/CPU sac

Present Failure Intensity
Low Limit: 0.075974 failures/CPU sac
Most Likely: 0.063783 failures/CPU sac
High Limit: 0.054462 failures/CPU sac

Additional Time Needed for Execution
CPU Time (hrs) Calendar Time (days)

Low Lm•it: 1.5 6.2
Most Likely: 1.9 7.8
High Limit: 2.5 10.3

Additional Failures to be Found
Low Limit: 96 failures
Most Likely: 128 failures
High Limit: 180 failures

FaiIure- Intensity
For ACT]]1 VeriuL, 2. 00

F- - ---------- -- -----------

S- -- .-..--- ---- -- - - - - - - - - -

---------

F 1 -

-___-------------------- :u~v--

I -- -- -- -- - -- -- -

-- -- -- ------ -4

* Figure 20-16. SQA:Manager Failure Intensity Table and Graph

20-17

SQA:Manager PART 11

Incident~s by S2ymptom
For- ACT I111 Vers i on 2. 00

- - - -- -

10

700

-7 ---------

Symp tomn

Figure 2G-17. SQA:Manager Plot of Incidents by Symptom

Problems By SeveritY
For- ACT III Version 2.00

------------------------- ----------- ---------------

--- -- ---- --------- -- -- ---- --- - -- - - - -- -- --
L.-. -----.-.-------------.-.-----.-. -----

- -- - -

"7
- - - - -

-- - - - - - - ---------------.
Ur4-

Figure 20-18. SOA:Mlanager Plot of Problems by Severity

20-18

PART II SRE Toolkit

21. SRE TOOLKIT

The SRE Toolkit supports reliability growth modeling using the Musa-Okumoto soft-

ware reliability models. It takes a record of failure events, in terms of elapsed execution

time from the start of test, and estimates various software reliability measures that track the

progress of testing. This is particularly useful during system testing when the underlying

faults causing failures are removed and hence "reliability growth" is occurring.

21.1 Tool Overview

The SRE Toolkit is available from Software Quality Engineering who hold a license

from AT&T for this version of the AT&T software reliability engineering tools and accom-

panying training. The tools are provided as part of a consulting and training package. This

package typically includes needs assessment and planning. Assistance in conducting and

*O evaluating a pilot application is also available. The three day training courses are held at a

public location or at a client's site. Attendance at a public course currently costs $995 per

person, while up to 20 people can attend an on-site course for a total cost of $10,000.

The tool has been available since 1990. There are two versions. One runs under Unix

System V on any supporting hardware. The other runs under DOS (release 3.3 onwards) on

an AT&T PC or compatible. Both versions of the toolkit require the awk program. While

screen graphics are available under MS-DOS, the Unix version of the tools generate pic

commands for a graphics output device and, therefore, need the associated pic utilities. The

evaluation was performed on the Unix version 3.11 of the toolkit.

The two main tools in the toolkit are est, the reliability estimation tool, and plot, the

graphics support tool. For est, the user specifies whether an exponential or logarithmic re-

liability model is required and the failure intensity objective that will be used to determine

when to stop testing. He can specify whether failure data entries should be interpreted to

correspond to individual failure events, or to the number of failures that occurred since the

previous failure entry or start of test interval (grouped data analysis). A testing compression

factor specifies the desired ratio of field execution time to test execution time allowing, for

example, more stress to be placed on in-house testing than field testing. In the case of the

exponential model, the user can also specify a failure time adjustment to adjust failure times

to take into account the incremental delivery of software to system test. For the logarithmic

model, a failure intensity decay parameter determines the rate of exponential decay.

21-1

SRE Toolkit PART II

The est tool uses the fitted model to estimate several reliability measures over a range

of confidence limits. These reliability measures include the present failure intensity and the

additional failures, test execution time, and work days required to meet the specified failure
intensity objective. In the case of an exponential reliability model, the total number of fail-

ures that would be experienced after an infinite amount of execution time is also given. Fi-

nally, the expected calendar date when the failure intensity objective will be met and the
additional calendar time needed for testing that this implies are reported. In addition to such
tabular data, est generates a file of plot commands for graphic output.

Prototype tools are included in the toolkit:

" resrusg. Uses simple regression analysis to estimate the testing resource usage param-
eters. It produces summary statistics for each recording period and estimates showing
the resources consumed per unit execution time and resources consumed per failure
parameter. resrusg also generates plots that show how well the regressions fit the orig-
inal data.

"• reldem. Plots reliability demonstration charts that indicate, for a given failure inten-
sity objective, whether testing should continue.

"• predat. Plots the completion date for testing, that is, when the failure intensity objec-
tive is met versus failure intensity objective. It also produces a table indicating testing
periods where a particular testing resource is a limiting resource.

"• minfio. Plots the total life cycle costs versus failure intensity objective. It includes the
system test and operational life cost.

"* logmod. Plots the logarithmic reliability growth model using model parameters, ini-
tial failure intensity, and the failure intensity decay factor.

"• expmod. Plots the exponential reliability growth model using model parameters, ini-
tial failure intensity, and total failures after infinite execution time. S

21.2 Observations

Ease of use. The tools are written as shell scripts (or batch files in the case of the MS- S
DOS version). Their operation can be tailored using parameters that are given in a param-

eter file or, in some cases, included with a tool's input data. The parameters range from
specifying the formatting of an output plot to such details as the cost per failure identifica-
tion resource hour. They provide considerable flexibility in the application of each tool. 0

Documentation. The documentation provided in the form of Unix-like man pages is
both helpful and extensive. The definition of the file format for failure data facilitates im-
porting data. Installation was straightforward although minor problems arose due to system

dependencies.

21-2

0

SRE Toolkit PART II

Problems encountered. The tools operated as described in the documentation.

21.3 Sample Outputs

Figures 21-1 through 21-9 provide sample outputs from SRE Toolkit.

21-3

0..

SRE Toolkit PART II

FAILURE PARAMETER FILE IS tst atg.fp
FAILURE TIME ANALYSIS WILL BE DONE
TEST COMPRESSION FACTOR OF 15.1 WILL BE APPLIED DURING ANALYSIS
FAILURE TIME FILE IS tat stg.ft
FAILURE TIMES WERE ADJUSTED
ADJUSTED FAILURE TIMES FILE IS tat stg.ad
GENERATING OUTPUT REPORT

SOFTWARE RELIABILITY ESTIMATION
EXPONENTIAL (BASIC) MODEL

TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

BASED ON SAMPLE OF 136 TEST FAILURES
TEST EXECUTION TIME IS 21.4559 CPU-ER
FAILURE INTENSITY OBJECTIVE IS 2.4 FAILURES/1000-CPU-HR •
CURRENT DATE IN TEST 861109
TIME FROM START OF TEST IS 96 DAYS

CONF. LIMITS MOST CONF. LIMITS
95% 900 75% 50% LIKELY 500 75% 90% 95%

TOTAL FAILURES 139 139 139 140 141 142 144 145 147

FAILURE INTENSITIES (FAILURES/1000-CPU-HR) * """'

INITIAL 1190 1234 1303 1370 1467 1566 1636 1710 1757
PRESENT 28.59 31.35 36.19 41.49 50.20 60.54 69.95 78.78 85.67

*** ADDITIONAL RMQUIRUIENTS TO NZE FAILURE INTENSITY OBJECTIVE ***
FAILURES 2 2 3 3 5 6 7 9 10
TEST EXEC. TIME 12.91 13.79 15.26 16.64 19.33 22.20 24.52 27.23 29.15
WORK DAYS 3.05 3.29 3.70 4.15 4.95 5.97 6.87 8.00 6.65
COMPLETION DATE 861113 661113 661113 461114 661114 661117 661118 861119 661120

GENERATING PLOT COMMIANDS. COHPLEZTED PLOT COMAD FILE IS tltStg.pc.

Figure 21-1. SRE Toolkit Generated Reliability Measures

21-4

SRE Toolkit PART II

Failures VS Exem Time

135

54

2lo

00

0 45 9 13.5 18 22.S

TST DATA SET WVTH STAGED DEVELOPMENT ADJUSTMENTS

Figure 21-2. SRE Toolkit Failure vs. Execution Time Plot

0

21-5

SRE Toolkit PART II

Initial Intensity VS Exec. Time

2800 ".,- .

2120 :=

•- .

1780 :

.

*.

0 4.

21--6

",.: -... o."

: ,.

1100* *,. . 4 6
140459131 2

TST AASTWT TGDDVLPETAJSr]'
* . q

Fiur 21- .SR.olitIiilInest s.Eeuin iePo

1. * * *

*21-

SRE Toolkit PART II

Present Intensity VS Calendar Time

1301.2
:.- .. "-1041L2

781.2 .

521.2

261.2

ObJective 24

L2
16.72 32.72 4.72 64.72 80.72 96.72

TSr DATA SET WrrH STAGED DEVELOPMENT ADJUShIMENTS

Figure 21-4. SRE Toolkit Present Intensity vs. Calendar Time Plot

21-7

SRE Toolkit PART 11

Completion Date VS Faluares

870328

870213

870101

8610PL-

0 27 54 111 106 135

TST DAIAL SET Wfl STAGED DLVELOPMDIT ADJUSTMEn5

Figure 21-5. SRE Toolkit Completion Date vs. Failure Dafta

21-8

SRE Toolkit PART II

period Ident. Computer Appr. Corr. Items
Rate Rate Fail.int. Work Corr.
--- --- -----

1 26.8949 76.5281 39.1198 50.6 7

2 15.4162 25.7965 13.3607 87.5 6

3 22.3404 29.7872 27.6596 59 5

4 16.3966 31.9328 10.9244 170 19

5 24.2537 16.4179 10.4478 103.1 19

6 12.6506 11.9976 5.42169 66 19

* 7 6.17978 7.30337 3.37079 92.7 10

8 6.39098 9.58647 4.51128 105.5 12

9 4.90716 8.32891 3.97878 75.1 20

10 5.13158 6.28947 1.31579 105.1 19

Failure Identification Rexources
thetal- 7.19208 bra/CPU-br, sui - 0.571399 hra/failure

Failure Correction Resources
0uf - 6.05505 hra/fix
Computing Resources
tbetac - 2.93493 bhr/CPU-hr, sue - 1.6195 bra/failure

Reformatted input is in file ex6b.out

* Wk -a hsms Camessi

* 149A6

• 4

74.2 4

37A

S4A &U W1. 17.6 22

Falm •C'nl. RuM

* Figure 21-6. SRE Toolkit Testing Resource Usage Parameter Estimation

21-9

0

SRE Toolkit PART II

0

LIMITING RESOURCE PERIODS

DATE EX.TIME FAIL. INT. LIMITIING RESOURCE

CPU-HR F/KCPU-HR

901001 0 1000
FAILURE CORRECTION

901224 752.039 222.222
FAILURE IDENTIFICATION

999999 999999 0

is

REJECT
12

9S

CONTINUE

3

0 200 40 P 00 we I

Figure 21-7. SRE Toolkit Reliability Demonstration Chart

21-10

I

PART II SRE Toolkit

COMPLETION DATE VS FAILURE INTENSITY (FaUJI000-CPU-HRS)

911111

910622

910602

910312

901221

90,0011

0 10 20 , 30 40 s0

COMPLETION DATE AND FAILURE INTENSITY OBJECrIVE

Figure 21-8. SRE Toolkit Completion Date vs. Failure Intensity Output

21-11

SRE Toolkit PART 11

COST ($W) VS FAIL INT. ODJ. (flOOO-CPU-HRS)

IAI

0 02

LIFEYCL COS AN FAUUR qTENrffOBJETIV

Figue 2-9.SRE oolit ifeCycl Cot ad Falur Inensty OjecivePlo

211

PART U T

22. T

T generates test data from requirements information and automatically provides tracing

between tests and defined software actions. Its goal is to generate the minimum number of

traceable, unique test cases that will exercise every operation and each of a set of vendor-

defined probable errors at least once. Test adequacy is assessed based on requirements cov-

erage, input domain coverage, output range coverage and, optionally, structural coverage.

T can be used during any software development stage; during maintenance test data is gen-

erated for software changes only. T is already used by various government organizations,

including the Naval Avionics Center, the Jet Propulsion Laboratories, Naval Coastal Sys-

tems Center, and U.S. Army Forts Monmouth and Sill.

Runner is a companion tool that provides test capture/playback for C.

22.1 Tool Overview

T was developed by Programming Environment Inc. In addition to T and Runner, this

organization markets consultancy and training services, and supports tool users with a quar-

terly newsletter. T has been available since 1987 and has over 1,000 users. It is available

for PC/MS-DOS and VAX/VMS platforms, and various workstations under Unix. Training

is a prerequisite for tool purchase and costs $1,500 per person at Programming Environ-

ments, Inc. or $10,000 for an on-site workshop. At the time of evaluation, prices for T itself

started at $7,000. T, and training materials, are, however, provided free to any university

that teaches courses on software testing.

Interfaces between T and some leading CASE tools are available. An interface to Team-

work is marketed by Cadre Technologies, Inc. and Interactive Development Environments

markets an interface to StP. (Boeing has developed a proprietary interface for the Exceler-

ator CASE and Texas Instruments for their Information Engineering Facility.) Support for

reverse engineering of TSDL specifications from existing code is also available. In this

case, Cadre markets tools to reverse generate a substantial part of TSDL specifications from

Ada, C, or Fortran. (Boeing is developing a proprietary tool providing the same function

for COBOL. Boeing is also developing tools to generate Ada and C code from TSDL spec-

ifications.) Code generation may also be supported by IBM's current effort to convert from

TSDL to Z.

22-1

T PART II 1

To support test execution, interfaces between T and the AutoTester Corp. product Au-

toTester, the Mercury Interactive Corp. product XRunner, and Tiburon's Ferret capture/

playback tools are commercially available.

The examination was performed on T version B3.0, running on a Sun SPARC worksta-

tion under Unix. This version was a demonstration copy of T, fully functional with the ex-

ception that only a limited number of data definitions and sentences can be processed at one

time and some reports are not generated. Additionally, the full set of test design rules is pro-

prietary information only available with purchase of full version; as a consequence, the

sampling rules cannot be changed and features such as random sampling are not available

in the demonstration version.

Before using T, the user must prepare a description of software actions, data, events,

and condition states. At the system level, this type of requirements information may be de-

rived from sources such as data flow diagrams, state transition diagrams, entity relationship

diagrams, and control diagrams. At the design or unit level, module descriptions will be the

primary source. The description is specified in the T Software Description Language

(TSDL), a superset of the Semantic Transfer Language (STL) [IEEE 1992]. TSDL allows

specification of operation statements and definitions for data items, conditions, and states.

It also supports event types with multiple inheritance for operations supported by temporal

conditions. Standard templates are provided to help write TSDL descriptions. The collec-

tion of resulting ASCII files is called a Software Description File (SDF).

Once an SDF has been prepared, the first component of T, called Tverify, can be run.

This translates the SDF into a Software Description Data Base (SDDB) and then checks this 0

database for syntax errors and to see whether it contains the necessary and sufficient infor-

mation for test case design and preparation. This verification also provides metrics such as

counts of actions, states, conditions, events, and data items defined in the SDF, and error

counts. A cross-reference report shows where every item is used (this report is not available S

with the demonstration version).

After successful verification, the user can request T to design test cases. Here the sec-

ond T component, called Tdesign, takes information from the SDF to group actions into ap-

propriate states. Test design rules are applied to partition data item domains such that all of

the values of the data item in a partition will probably be processed in the same manner.

The test design rules used by T are derived from the following test techniques:

22-2

"0

PART II T

"• Functional testing. The input domain is partitioned into classes such that each mem-
ber of a class causes a given action to be executed. Test data is selected from these
partitions that will cause all actions to be exercised.

"• Equivalence class partitioning. The input domain is partitioned into a number of
equivalence classes such that a test of a representative value of each class is equiva-
lent to a test of any other value. The minimum set of test data that will invoke as many
different input conditions as possible is selected from these partitions.

• Boundary value analysis. The input domain is partitioned into a number of equiva-
lence classes. Test data is chosen that lies at the edge of these partitions to reflect the
boundaries of the input domain.

"* Cause-effect graphing. The input and output domains are partitioned into classes that
specify which input classes cause which outputs to occur. Test data is selected that
will cause all effects to be exercised.

"* State-directed testing. Test data is selected to cause every transition between states to
be exercised.

"* Event-directed testing. Test data is selected to cause every event (some signal passing
from the external world) to be exercised.

A fault-directed approach is used to select samples from the partitions yielded by the
above techniques. This approach guides the selection of both valid and invalid samples that

are likely to detect errors. By default T selects the following samples:

• For the valid subdomain:
a. Low boundary value,

b. Just above low boundary value,

c. Reference value (midway between the low boundary and high boundary values),

d. Out-of-type values 1 to n,

e. Just under high boundary value, and

f. High boundary value.

• For the invalid subdomain:

a. Just below low boundary value, and

b. Just above high boundary value.

The actual values taken, of course, depend on the type of the data item in question. Out-of-

type samples for an integer, for example, are a decimal, single character, and list of charac-

ter values. As appropriate, additional samples are taken; for integers that include the value

zero, for example, a troublesome sample is taken, with value zero. Though not experienced

in the course of this examination, the user can define his own samples and modify the sam-

pling rules. For example, the user can add additional normal values and abnormal values.

22-3

pmm mmml lml l N l mnnnln i

T PART II 1

A technique called guided synthesis is used to combine samples. This method provides a

repeatable strategy for probing a two dimensional testing space where only one data item

is varied at a time, the others being held at a normal, or reference, value. 0

Tdesign also creates the Test Case Data Base (TCDB) which contains one file per test,

designed for easy use by test execution tools. Test design metrics provide all the non-sub-

jective values used for function point calculation. (The test design metrics report is not

available with the demonstration version. The trace report that provides a cross-reference

between software actions and tests is similarly not available; this information is, however,
included on a case-by-case basis in the test case summary report that details each generated

test case.)

T supports test execution by providing a model for calculating test coverage. T treats

test coverage as including requirements, input domain, output range, and structure cover-

age. These factors are weighted individually and summed to produce an overall Testing

Comprehensiveness (TC) measure. The user can adjust the weights to, for example, reflect

different priorities at unit, integration, and system test levels. Requirements and input do-

main coverage are automatically reported by T. Currently, the output range and structure

coverage must be recorded manually, and TC calculated manually. An on-line pass/fail re-

cording facility is under development that will allow a user to specify test priorities and
record dates of execution and test results to allow automating this calculation.

22.2 Observations

Ease of use. The demonstration version of T is easy to install and use; the difficult part

lies in creating the TSDL description. Although the demonstration version is limited to a

character-based menu user interface, the full version of T allows users a choice between

this and a graphical user interface, command line interface, or script interface. Context-sen- 0
sitive, multi-level on-line help is available.

Documentation and user support. The documentation provided with the demonstra-

tion version of T included a full description of TSDL and was adequate for its use. Pro-

gramming Environments, Inc. were very helpful in answering questions.

Problems encountered. The demonstration version operated as described in the docu-

mentation.

22-4

• m m0

PART II T

22.3 Recent Changes and Planned Additions

A new component is now being delivered with T. Called Tprepare, this component pro-
vides for rule-based preparation of test documentation. The user defines his own rules al-

lowing, for example, documentation to conform to DoD or IEEE standards.

Several new features are expected to be released in the first quarter of 1993. Torder, a
new T component, will order test cases and write test scripts to handle the necessary test set
up and clean up. Another component, Quantifier, will take user-supplied test results to au-

tomatically calculate and report on the TC coverage measure. T will also support generation
of an operational profile to support Musa's reliability assessment.

An interface to the AutoTester test execution tool is under development.

22.4 Sample Outputs

Figures 22-1 through 22-7 provide sample outputs from T.

22-5

T PART 11

/* This Software Description File, SDF, contains a partial
/* specification. There is enough information in this SDF to '
/* illustrate the STL and the basic processing in T. There is
/0 not enough information in this SOF to specify a complete
/* lexical analyzer generator or to demonstrate T completely. 0

S~paoket Adalex -I
has subject NAdalex;specification'
has content version alai
has description 'This S LPacket sentence

'identifies the set of
*information in this file.

*include (tsdl . td> /0 This line includes standard definitions 0

/* The standard definitions will help this adf, '
/* but they will also cause some extra definitions'
/* to appear in the report called verify. rpt 0

Begin Action Definitions --- --------- ~~0
/0 ----- --- ------ ---------------- = - ------- -

/0 - The words, identifier and integer, are keywords in IIM 1175 ~0
/* so they definition will cause T to generate comments. However
/* - there are no reserved word. in the T scanner/parser so the - /0

/0 -- key words will be processed correctly. -

action Adalex
is actiontype internall
is selected by a'invocation'
is concluded on 'termination'
uses data item contextandlexicon

identifier, /* Patterns 0

letter, /* Patterns 0

digit, /0 Patterns 0

letteror3ýdigit, /* Patterns 0

integer, /0 Patterns 0

decoimal li'teral,, /* Patterns 0

oPeratorsym7bol, /w Patterns 0

left~parenthetsis, /0 Patterns 0

right-1perenthesis, /* Patterns 0

combining-option ,

produces dataitea a new _lexical,_analyser,
Standard_;rrorFile1

has description 'The scanner produced depends upon'0
'three it ems : 1- A data type, a'
"table, defining tokens, 2- A
'get, next character procedure, and"
'3- A make~token procedure. '

Figure 22-1. T Sample SDF

22-6

PART 11 T

/* ---- Begin Data Def inition- -------------- ----- -------
------- -------- - ----- ----------- -

Dataitesi context -and..lexicon
has placeholder value 'This ishould be the input context an,
has description 'On page 5 of IDA Paper P-2100

"the specification f or Adalex
"names a aontext-clause, a
Ogenerioj- ormal..part, a separate
'parent-name and a lexicon. The'
'named items are not defined in '

OP-2100 so they are illustrated '

n in this file with a placeholder'
'or to-be-defined value.'

Dataitem identifier is an instance of datatype identifier-t
Datatype idontifier-t

is datatypeclass string,
has values //fA-Za-zJ 1,64_[A-Za-zO-9] 1,64//
has valid mubdomain as-specified;
has invalid subdomain abnormali
has description 'P-2109 did not define the

'allowed minimum or maximum
"of identifiers. So a minimum of'
'one character and a maximum of '

'128 characters was assumed. '

Dataitem letter is an instance of datatype letter -t
Datatype letter..t

is datatypeclass string;
has values //CA-Ia-si//I
ham valid subdomain ansspecified;
has invalid subdomain abnormal,

Dataitem digit is an instance of datatype digit -t
DataType digit~t

is datatypeolass character
has values //! 0-91//,
has valid subdomain &s_specified;
has invalid subdomain abnormal.

Dataitemt lottar-qrdigit is an instance of datatype letter-or-digit-t
Data~ype letter-orýdigit-t

is datatypeclass characterl
has values // [A-Sa--ZO-9)//,
has valid subdomain as..specifiedi
has invalid subdomain abnormal.

Figure 22-1 continued: T Sample SDF

22-7

T PART 11

Dataitem integer is an instance of datatype integer-t
Data~ype integer-t

is datatypeolass character;
Mes values //(0-911,64//1
has valid subdomain as specified,
has invalid subdonain abnormal.

Dataitem decimal-literal is an instance of datatype deoimal..literal~t
Data¶!ype deoimalý_iteralt

in datatypeclass stringi
has values //10-911,26.1(0-910,16"1,
has valid subdomain as specifiedl
has invalid subdomain ab~normal.

Vataitem operator symbol is an instance of datatype operator...syubol,.t
Datatype operator _symbol t

is datatypeclass string;
has values N+N, 4-0 se,96
has valid subdomain as specified,
has invalid subdamain abnormal,

Dataites lWtpaNrentbesim
ham fixed value ''

Dataitin right~peroathasis
ha.. fixed value

Dataiten ocmxbining~optiLon is an instance of datatype combining...ptiont.

Datatype ccmbiningopption-t
is datatypeclass string,
has values "is copied', *is separate*, Ois generic*
has valid subdomain as specified I
has invalid subdomain abnormal ;
has description 'The combining option tells Adalex'

"how to package the generated'
'scanner.'

"Dteiteu anmevlezioal,_nalyser
has fixed value "Ada source code for a scanner'

Dataitest Standazd..Urzorjyile
has fixed value 'a report of ervors detected'

Dataitea Bos
has fixed value 'DOS is !KUU when the last character in reached
has description '9OS means Xnd..ofsytream. MOS is

'VALUE as long as there are more
'characters in the input stream. ';

Figure 22-1 continued: T Sample SDF

22-8

PART II T

T Software Description Verification version 3.0 (Restricted)

Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

1 #line 1 gxdf"

12 /* This Software Description File, SDr, contains a partial
13 /* specification. There is enough information in this SDF to '/
14 /* illustrate the STL and the basic processing in T. There is '/
15 /' not enough information in this SDF to specify a complete '/
16 /e lexical analyzer generator or to demonstrate T completely. 0/

21 Spacket Adalex_1
22 has subject wAdalex specification'
23 has content version fig.;
24 has description 'This S Packet sentence
25 *identifies the set of
26 linformation in this file.
27
28
29 #line I '/eval/toode/tsdl. std"

1 *noecho
142 #line 30 "edf'

30 /* The standard definitions vill help this sdf, ,/

174 Dataitem next character
175 has fixed value 'The output character should equal the i
176
177

<End of File)

- finished translation with 46 "ecogansable TODL sentences out of 46
- saving description data base

translator messages
4 oammant message

Znterpretation

mpacket: Adalexl
Uftitdatei Fri Oct 9 1213.:49 1992

avaluation

Accept Reject llam

• •" Adalex

Figure 22-2. T Software Description Verification

22-9

T PART II

Extra dataitems
EOS0
next character

Extra datatypes
Bit
BitSstring
Digit
LocalPhone
PrintablaSCUI
USPhone
ZipCode5
ZipCode9
boolean integer
booleanjstring

Extra states
<none)

Extra statetransitions
(none>

Figure 22-2 continued: T Software Description Verification

T Software Description Metrics Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

m_packet: Adalex 1
unitdate: Fri Oct 9 13:13:49 1992

Total Extra Verified Unverified Dynamic

1 0 1 0 action(s)
0 0 0 0 statetransition(s)

Total Extra Verified Unverified Static
In Out In Out

0 0 0 0 0 0 condition(s)
15 2 11 2 0 0 dataitem(s)
1i 10 8 0 0 0 datatype(s)

0 0 0 0 0 0 state(s)

Deficiencies: 0
Inaonsistenciest 0

Figure 22-3. T Software Description Metrics

22-10

PART II T

T Design Rule Verification Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

1 /* T Design Rule Generation Version 3.0
2 " Copyright (C) 1987-1992 Programming Environments, Inc.
3 a,
4
5 TPacket tpacket
6 s packet Adalex 1
7
8
9 Local context and lexicon

10
11 Local left~parenthesis
12
13 Local rightparenthesis
14
15 CombinationRule CR0001
16 action Adalex;
17 singular contet and lexicon,
18 identifier,
19 letter,
20 digit,
21 letter-ordigit,
22 integer,
23 decimal literal,
24 operator symbol,
25 left parenthesis,
26 right-parenthesis,
27 oembiningoption;
28
29
30 SelectionRule SROOO1
31 datatype identifier t;
32 reference TBD:
33 valid as specified
34 with function, boundary, debug,
35
36
37 SelectionRule SR0002
38 datatype letter t;
39 reference TBD;
40 valid as-specified
41 with function, boundary, debug,
42
43
44 SeleotionRule SR0003
45 datatype digit t;
46 reference TBD;

Figure 22.4. T Design Rule Verification

22-11

T PART II

47 valid as-specified

48 with function, boundary, debug;

49 S
50

51 SelectionRule SR0004

52 datatype letterordigitt;

53 reference TBD;

54 valid as specified

55 with function, boundary, debug;

56
57
58 SelectionRule Sjt0005

59 datatype integer.t;
60 reference TBD;
61 valid as specified
62 with function, boundary, debug;
63
64
65 SelectionRule SR0006
66 datatype deoialliteral t;
67 reference TBD;
68 valid as specified 0
69 with function, boundary, debug;
70
71
72 SelectionRule SRO007

73 datatype operatorsynbol_t;

74 reference TBD; 0
75 valid as specified

76 with function, boundary, debug;
77
78
79 SelectionRule S80008

80 datatype ocbiningoption.t•
81 reference TED;
82 valid as speoified
83 with function, boundary, debug;
84
85
86 pepark

- finished translation with 13 recognizable TDRL sentences out of 13

Interpretation

*_packet, Adalex-l
unitdates Fri Oat 9 13:13:49 1992

t packet: tpacket
casedate: Fri Oct 9 13:17:42 1992

- saving rules in test design data base
Figure 224 continued: T Design Ruie Verification

22-12

m 0

PART 11 T

T Test catalog Version 3.0
copyright (C) 1987-1992 programming Environments, Inc.

s~packet: Adalex1l
unitdate: Fri Oct 9 13:13:49 1992
t~packet: tpacket
casedate: Fri Oct 9 13:17:42 1992

Case purpose (+ exercises action, - fails to exercise action)

0001 + action Adalex
state (unspecified>
dataiten all at reference

0002 + action Adalex
state (unspecified>
dataitem all at low boundary

0003 + action Adalex
state <unspecified)
dataitem all at high boundary

0004 + action Adalex
state (unspecified)
dataitem identifier (valid as~specified low-bound)

0005 + action Adalex
state (unspecified)
dataitem identifier (valid as-specified highkbound)

0006 + action Adalex
state (unspecified)
dataitem identifier (valid as-specified coup [21 ,reference)

0007 + action Adalezx
state (unspecified)
dataitea identifier (valid asaspecified coup (21_reference)

0008 + action Adalex:
p state (unspecified)

dataiten identifier (valid as-specifiled coup (21 .ref rence)

0095 + action Adalex

state (unspecified>

dataitem combiningopption (invalid outoftyp. out-of-typeý3)

- saving cases in test design data base

Figure 22-5. T Teot Catalog

22-13

T PART 11

T Sample Generation Version 3.0
Copyright (C) 1937-1992 Programming EnVironnents, Inc.

s~packet- Adalexi_
unitdates Fri Oct 9 13:13149 1992
t~packet a tpaaket
casedate: Fri Oct 9 13s17:42 1992

coinbining~pption
Index SubDomain Equiv.Clasu Label Value

11 valid as specified reference "is separate'
C 21 valid as specified low bound *is copied*

31 valid easppecified higb~bound 'is generic,
1 41 invalid not in list not .in list '(not..inlist)'

51 invalid out of type out oftya 9
1 61 Invalid out~f.ýtype out of typs2 9.9
1 71 invalid out of-type out:*ftype_3 #at

contest and lexicon
Index SubDomain Zquiv.Claus Label value

11 valid placeholder reference "This ishould be the input canti

decimal~literal

Index SubDomain Uquiv.Class Label value

11 valid &"spacified reference '013.01'
1 2) valid as specified lowvbound '3.'
1 31 valid aasepecified high..bound '45678901234567S9.2345678901234!

1 41 valid asspecified coup [21_eference 90.69'
C S5 valid agsepecified cOMP(2L-reference B12.019

Q] valid as specified compl2]...refarenc& 8345673901234567.239
71 valid as~speaified ccmp(2L_;eferenae 68301234567390123.45'
61 valid as specified oomp(2].lcwýbound '456.'
91 valid asapeacified comp(21_Xoavdebuq 0789.6'

1 101 valid easpeqcified compL21_higbhdebug '012.7990123456789016
(111 valid as..speoified ocnpL21_high..bcund 0345.23456799012345670
1 12) invalid notj.nlist oomp(O1_dropped '.89,'

(131 invalid nct..injist aamp~lL-dropped '67301'
(141 invalid not.).n..list aomp (0) belcv..bounds '.230
(151 Invalid notinliist owpLj0..a~boveandz '90123456709012345.45'
16]5 invalid not1.ný_list ocimpil~jbelcv.boundo '67967'

1 171 invalid notin _list ocamp 11)ebove-boande '901.-69'
1311 invalid notinli1st aamp(2 j above -bounds 0234.01234567590123456'
1191 invalid not..in .list aamp!01ywrons 1 1'.780
201 invalid not~inklist ccaupiI..yrong '567 90'

121) invalid not.±in list aamp[2Lvrong '390.I'sao,-/
1221 Invalid act of type oUt~ft-ypel 9
123) invalid out..of type outý_09_type..2 9.9

24) invalid out.-of-type out~of..type..3 'a'

Figure 22-6.T Sample Generation0

22-14

PART 11 T

digit
index SubDomain rquiv. Clan. Label Value

1) valid asaspecif led reference '0'
C 21 valid as~apecif led law bound f1'

3] valid asaspecif led higih bound '2'
41 invalid zotin lint coup [0] dropped
51 invalid not -in -list comp(O)_yrakg

1 61 invalid cut-of type out-of-typej1 9
71 invalid out -of type outý_of_typ....2 9.9

1 61 invalid out of :type out-of_ýtypej "(not-in-list)"

identifier
Index SubDamain Bquiv. Clan. Label value

11 Valid as_ spe cified. reference 'ABC-0122
C 21 valid as-specifiled low-bound *D-30

31 valid as - pecifiled high~bound. UZGHIJKLIMtOPQRSTUVWXYZabodefghI
41 valid as - pecifiled comp(2LrXeference EQ_6780

C 51 valid as..npecif led. coamp2jXaference 'RS..913
C 6] valid asnepecif led comp(2 1_Xeference '!UVWllebcedefghijklaunopqrstuvwi

7] valid asaspecif led camp (21 reference lefshijklunopqrstuvwxyzABCDEFGHI
C 61 valid aagupecif led comp [2) loKbcuzd DqrsýI

1 91 valid as-supecified coup 21_low~.debug stuv - 'n
C 10) valid asnnpecif led. camp (2] high.debug *xyLMNOPO38tUVWXYZabcdefghijk2
(111 valid au~specified camp (31high-bound "zABjOIOPOBSTUVWXTZabcdefghijklu
C12) invalid ftotijn list camp (0] dropped pe

131 invalid notjinlist compClidropped 'CDURB!.
141 invalid not~in list. camp (2Jdropped WNNGB

(151 invalid notin list coup 101_below -bounds OTMO
161 invalid not~inklist coup (0 1 abovebounds 'IJFIIIEMPQRSTUVwxrzabodefghijklz

C171 invalid notjn list oaplblobud VK~abc'
C181 invalid notin lint oompillabove..bounds uYla__def
1191 invalid not~in lint camp (21bemlavýbcunds 'Ibcd2"

C 201 invalid not in Iint camp 121..abovbounds 'efg~hijklmnopqrstuvwxyz~l2345(
(211 invalid natýin Lisft camp (olirrong 0 10ki'

3 21 invalid not~inlist camp lJyrong Obil innO
C 231 invalid not-inlist aampC2]ierong Nklsa I'

241 invalid out-of -type Oultof4tyPel 9
1251 invalid out~of type out-of-type_2 9.*9
2 61 invalid out-of-type out~of~type_3 'a'

integer
Index SubDomain Uquiv. Clog. Label value

11 valid as specif led reference '012'
2) valid as specified low bound '30'

C 31 valid asaspeoified highboWund '4567S90123456789012345678901234
1 41 valid anespecified camp (O)_lawbound '6'l

5) Valid asknspecified campjO3_lawr debug 'g0'

Figure 22-6 continued: T Sample Generation

22-15

T PART 11

61 valid as~specified aasp(D)hiqb..Aebug '1234567890123456789012345678902
71 invalid not in..list oomp(01_4ropped "o

S1 invalid out ot...type out.of-typel, 9
1 9) invalid out of...type out..oftype....2 9.9
110) invalid out of-type out-of-typoj 3 not-in-list)tm

left-Parenthesis
Index SubDonain mquiv. Class Label Value

11 valid (none> fixed value

letter
Index SubDomain Zquiv.Class Label Value

11 valid as~speoif Led ref erenceGA
21 valid as specif Led lovýbound w33

1 31 valid as~speoif Led high-bound OCRm

1 41 invalid not -in list oamp(O1_dropped 0
51 invalid not in juit amp I 6..abovea_bounds 'DI'
6) invalid not -in).ist comp(0I.wroug S S

7) invalid out -of-type out..-of..ype..1 9
81 invalid out-of-typo outoftype.). 9.9
91 invalid out of :type outoqf..typ._3 fa'

letter-or~digit
Index SubDowain Equiv .Clauss Label Value

E 1) valid as~specif Led ref erence for
E 21 valid as -pecifiLed 1ow bouad f1t

1 31 valid a8_8pecif Led high..btaud '2'
41 invalid notjin ist oomp [Ol-dropped t
51 invalid aotj~n list aamp(01,.vrong I f

1 61 invalid out of type cutof~type,1l 9
E 71 invalid out of_ type, out,.of-typ...2 9.9

1 68 invalid out~oftype out...f..type.. ftotinuist)

operator~symbol
Index SubDomnain Uquiv .Class Label value

11 valid as specified ref erenoe 0*0
C 21 valid ansspecified lorbon +6

31 valid "_specifiLed hib6gbound /
E 4) valid ao spqif Led elmewt_2 -
1 51 invalid notijnjist. not inlist a <not-.inlist),

1 61 invalid out-of type outpof.type-l 9
1 7) invalid out~oftype out _of~tnwe2 9.9

8S1 invalid out-oftype ounofýtype-3 far'

right-parenthesis

Index SubDomain Squiv.Class; Label Value

11 valid (none) fixed value 5

-saving saniples in test design data base

Figure 2246 continued: T Samnple Generation

22-16

PART II T

2 Test Case Definitions Version 3.0
Copyright (C) 1967-1992 Programing Environments, Inc.

&_packet: Adalex_1
unitdate: Fri Oct 9 13:13:49 1992
t packet: tpaoket
casedate: Fri Oct 9 13:17:42 1992

#$#######l#####i#I#i####i#########i#i##l##############################i#

INDw 0001
CASMANE 01000001
EINRBZS Adalex
IN STAME <unspecified)
RMON inputs all at reference values
INPUT DATA
Naue - Value

oontext_and_lexicon
- *This ishould be the input context and lexicon description,'

identifies
- ABC_012'

letter
- 'As

digit

latter-orsdigit

integer
- '012'

decimalliteral
- '012.01'

operato _symbl
- BC'

l1ftparenthesis
- 'C'

right~jmpanthesis

combining-jption
s ix separate'

START Er Invocation
MW BT termination
OUTPU DATA
sun - Value

a~me_ lexioaleualyser

- Ada source code for a scanners

Standaz.UZrrorile
- 'A report of errors detected"

!USMITION (none)

Figure 22-7. T Test Case Definitions

22-17

T PART It

########################$########$#i#############l######################
INDEX 0002
CASZNANZ 01000002

XZMCISZS Adalez
IN STATE (unspecified)
REASON inputs all at low boundary
I4PUT DATA

Name - Value

oontext_and_leGxicon.
- *Thin ishould be the input oontex and lexicon description.'

identifier
- D_3'

letter

digit
_ '

lette• or digit
- fit

integer
- '3'

decimal literal
-- 93.0

operatorsymbol
- '4'

left-parentbesis
-- g o'

right..parenthesis
- a)%

ocmbiningopticn
- *in oopied*

START BY invocation
XVID By termiation
OUTPUT DATA
Name - Value

3UT y invocation 0
noD By temination
OUM DATA
Name - Value

a~mev.ledical analyser

'Ada soure code for a scanner*
Standardlrror_ ile

- 'A report of errors detected

TRASIZTION (none)

Figure 22-7 continued: T Test Case Definitions

22-18

,,..mm mmmm u m m • mmnnla H NI

PART II T-PLAN

23. T-PLAN

I T-PLAN is a test planning and modeling method with an associated PC-based tool. The
T-PLAN method is documented in a series of manuals that deal with strategic test planning,
resource organization, and management. These manuals include guidelines that help a user

to structure and partition testing into manageable pieces dependent on a series of factors

such as risk and budget. The associated tool supports planning, organizing, and document-
ing test activities. The following evaluation focuses solely on the T-PLAN tool.

Aimed primarily at functional testing at the system level, the T-PLAN tool can be used
for testing activities throughout development. In addition to supporting the planning and
documentation of test activities, it provides statistical analyses to monitor these activities.

Change impact analysis identifies those parts of a system under test that are affected by a

modification.

23.1 Tool Overview

T-PLAN is marketed by Software Quality Assurance, Ltd. in England. This company

will examine a customer's testing requirements to develop an implementation plan for T-
PLAN installation. This service can include T-PLAN customization through the develop-

ment of appropriate test models and data entry templates. Software Quality Assurance also
provides strategic test planning consultancy and independent system testing, as well as

training and seminars.

The tool has been available since 1989 and has over 120 users. It runs on an IBM PC,
or compatible, under either DOS (release 3.1 onwards) or Unix. T-PLAN employs a fourth
generation language and associated relational database. It can be networked on all major

0 PC networks to enable a team of people to design, document, and review testing details. At

the time of evaluation, T-PLAN prices started at £9,500. The evaluation was performed on
a demonstration copy of T-PLAN version 2.0. This demonstration software is fully func-

tional, except (1) only a limited number of records can be added to the supplied test data
I base, and (2) test data input and output templates cannot be customized.

T-PLAN allows the user to define the underlying test model, although the model de-
fined by Software Quality Assurance can be used for this purpose. The structure of the re-

sulting test model is recorded in the T-PLAN Test Dictionary. Consequently, with T-
PLAN, the test process starts with establishing the structure of the underlying test dictio-

23-1

I " -• . . i

T-PLAN PART II 1

nary. The desired structure is typically determined through a modeling activity that, based

on documentation such as the functional requirements description, specifies the expected

behavior of the system under pre-determined conditions. It is specified in terms of func- 0

tions, inputs, and outputs, called test entities. Specifically, the following object types are

recognized:

"* Test Specification. The highest level entity that defines the overall test plan.

"• System Function. A condition to be tested, given at the level where individual test
conditions can be identified for each function. Where necessary, system functions can
be equated to system properties such as performance, recovery, or stress.

"* Source System Input. Content and format of the input data required for testing.
"* System Output/Data Profile. The contents and format of expected output data.
"* System Program. An optional entity that allows storing program reference ; and cross-

referencing these to functions and files so that the affect of a program change on test-
ing can be assessed.

"• System File. An optional entity that allows storing file references and cross-referenc-
ing these to functions and programs so that the affect of a program change on files can
be assessed.

"• Service Queries. A record of the complete history of a change.

Once the dictionary structure has been established, Test Conditions are entered for the

identified functions. These provide descriptions of the functional conditions that are re-

quired to be tested. Usually, they drive the design of test inputs and expected outputs. Test

Conditions are captured with a unique reference and structured into Test Sets via a Function

Reference; further grouping of Valid and Invalid categories can be assigned. Conditions re-

lating to particular releases or versions of a system can also be grouped together. Test Con-

ditions are cross-referenced to test inputs and expected results. Additionally, common Test

Conditions that are to be centrally held and reused can be defined.

Test input data is created via user-tailorable templates. These are designed to match

source system inputs (usually screens), thereby giving the feel and look of using the actual •

system. Special templates for "No Screen Data" testing can be used for scripting and allow

script narrative to be cross-referenced to Test Conditions. Scripting can be combined with

input templates as required.

The user also defines templates for expected output data, called Output Data Profiles. 0

These data profiles are designed to match system outputs or to give a logical pointer to

where output data is expected. Each represents a view of a record, file, or report of a spe-

cific data entity in a given time-frame. Thus, the history of a data entity can be recorded and

tracked through the entire test plan. A special "No Profile Data" template is available for

23-2

PART II T-PLAN

capturing expected results. This template allows the user to give a narrative expected result

"Check List" and cross-reference it to Test Conditions. As before, this type of scripting can

be combined with the output data profile templates as required.

The dictionary employs cross-referencing at both the test entity level and the data level.

Various static analysis functions make cross-reference listings available to the user. This

cross-referencing enables T-PLAN to analyze the impacts of changes on Systems Func-

tions, Inputs and/or Outputs. By identifying areas of the system that are directly affected by

a change, and areas functionally dependent on the area being changed, T-PLAN helps to

identify regression testing requirements.

The test dictionary itself consists of test specifications that contain the information re-

quired to test and check test results for a given part of the system. A test specification can

contain one or more test paths, where a test path is a collection of tests that form a test run.

Test paths can be thought of as a timeframe in which a particular set of tests must be run.

They can, in turn, be grouped into test cycles to define a series of dependent test timeframes

and/or test specifications. A log of test data and dated records of test events are subsequent-

ly stored against a test specification to allow a history of testing activities to be maintained.

By mapping test specifications to software components, the dictionary provides for trace-

ability of test data to the software under test. If required, test data may be linked across test

specifications and its history tracked via Data Profiles. Traceability is also provided at the
entity level, that is, between test specifications and functions, inputs, and outputs. Test
schedule activities are defined in terms of a system, phase, package, and, optionally, soft-
ware build parameters. They are separated under three categories: test preparation, testing,

and regression testing, each of which has an associated review process. In each case, the

user can specify who is responsible for the activity, an estimate of the number of days re-

quired, the actual days completed so far, and an estimate of days outstanding. This data is

used to produce test progress reports. These reports include figures of, for example, per-

centage completed against schedule. The management reports provide information at the

system, build, or package and phase levels. A Test Management Summary reports on the

status of testing with respect to test paths.

Changes, and change control information, can also be recorded against test specifica-
tions. The change control management system utilizes "Service Queries." The user can

record queries and errors, whether or not they sponsor a change, as service queries. This

enables tracking the complete history of a change, including description, prioritization, es-

timates, actual and outstanding effort, query or error classification, and software library re-

23-3

T-PLAN PART II

lease information. Management reports provide for monitoring the progress of changes. For
example, reports analyze the totals of errors or queries by classification, the frequencies or
errors and frequency of clear-up, as well as the percentage completed and outstanding effort 0
to complete changes. This type of information can be used to check test progress and assist
in planning future projects.

23.2 Observations

Ease of use. The tool provides a menu driven interface, where the user uses the key-
board to make selections and input data. Database-type search and display operations are
provided for viewing the test dictionary contents. There is no graphics capability. The on-

line help facility provides a description, derivation formula, and cross reference to user
manuals.

Templates are used throughout to facilitate data input. Since the user may customize ex- 0
isting templates, and create new templates, this provides some tailorability to the tool. To
keep stored test data in line with the templates, when a template is changed, all test data
stored for the template is automatically reformatted to match the new template. In certain
circumstances, data captured via input templates can be exported in external file formats to 0
aid in setting up file data needed for testing. The file formats available include DIF, dBase,
Lotus 1-2-3. Conversely, data in these formats can be imported into T-PLAN.

Another helpful feature is the ability to create central data profiles. These are centrally
held tables of data that can be accessed from input and output templates. This not only re- 0
duces the need to rekey repeated data but reduces the possibility of discrepancies between
repeated pieces of data. The tool comes with one centrally held file already set up to hold
a copy of Error Messages and Codes. (System error messages file data can be imported di-
rectly into the tool.) 0

Documentation. Only the documentation for the demonstration version of the tool was
supplied. This was adequate for its purpose. The full version of T-PLAN is accompanied
by four volumes relating to test management, strategy, test modeling, and technical issues.

Installation was straightforward.

Problems encountered. The tool operated as described in the documentation.

23-4

S • . • m0

PART II T-PLAN

23.3 Recent Changes and Planned Additions

An interface from T-PLAN to Direct Technology Ltd. Automator-QA is now available.

This allows test input data stored in T-PLAN to be "played" directly into the software under

test via Automator test scripts. An interface to automatically feed test log information back

into T-PLAN is under development.

23.4 Sample Figures

Figures 23-1 through 23-17 provide sample outputs from T-PLAN.

23-5

T-PLAN PART II

FUNCTIONAL CONDITION LIST AS AT 04/01/80 VERSION 1.1
FUNCTION REF FXI FOR TEST SPEC REF: FA2
FUNCTION NAME Foreign Exchange Input
SYSTEM : IDS
OVERALL FUNCTION FX On-line Deal Processing

RELEASE NO. 1.0 INCLUDE/EXCLUDE I
INVALID/VALID : I

TEST CONDITION PATH "DEV DOC
NO. NO. REFS

01 A Deal Type not completed 01 SCSD2.1
01 B Deal Type not valid code 01 SCSD2.1 0
02 B Deal Date later than value date 01 SCSD2.3
02 C Forward valued Deal Date before value date 01 SCSD2.3

FUNCTIONAL CONDITION LIST AS AT 04/01/80 VERSION 1.1
FUNCTION REF FX2 FOR TEST SPEC REF: FA2
FUNCTION NAME Foreign Exchange 2nd Authorise
SYSTEM : IBS
OVERALL FUNCTION : FX On-line Deal Processing

RELEASE NO. 1.0 INCLUDE/EXCLUDE I
INVALID/VALID : I

TEST CONDITION PATH DEV DOC
NO. NO. REFS

so Attempt to 2nd Authorise a Deal that 05 SCSD2.3
has not been 1st Authorised

51 Attempt to 2nd Authorise a Deal without 05 SCSD2.3
appropriate security level

52 Attempt to 2nd Authorise a Deal that SCSD2.3
has already been 2nd Authorized

53 Attempt to 2nd Authorise a Deal that 05 SCSD2.3

16 J Interest Arbitrage Deal (Deal Type FA) SCSD2.3

PERCENTAGE OF TESTS TO BE INCLUDED 84.00%

Figure 23-1. T-PLAN Test Model Functional Conditlon List Report

23-6

PART II T-PLAN

I INPUT REFERENCE EIN I
4.------------------------------------+

I FUNCTION KEY : ENTER I
+-----------------------------------4

- ---

I TEST SPEC REF FIN PATH 01 SEQUENCE NO. 0010 1
4.--+

DLIN X FX DEAL INPUT DDMMYY TERM OAIP

DEAL TYPE VN DEAL DATE 271290
COUNTERPARTY 00109

PURCHASED CURRENCY DEN
SOLD CURRENCY NOK AMOUNT 225,000

CROSS RATE 4.444444
STERLING RATE 2.934

VALUE DATE 271290 OPTION FROM TO
CONFIRMATIOM METHOD S PAYMENT METHOD N

DEALING METHOD 10 COVER PAYMENT REQUIRED N
SWAP BASE RATE CCY IF NOT US$

A-TYPE DEAL SPOT RATE FLAT CURRENCY

OUR RECEIVING AGENT C 00109HN0101
OUR PAYIMG AGENT A 00109DB0107

THEIR RECEIVING AGENT
BENEFICIARY ACCOUNT

FREE FORMAT

DL X SUPPLEMENTARY PAYMENT DETAILS AND CHARGES TERM 0AIP

A/C REP. CODE NARRATIVE CCY D/C AMOUNT ERRORS/EXPANSIONS

SUPPLEMENTARY PAYMENT DETAILS

50 :ORDERING CUSTOMER
NAN NAM
STR PLC

57 '"ACCOUNT WITH' BANK ACT/
NAN NAM
STR PLC

59 BENEFICIARY CUSTOMER ACT/

NAM NAM
STR PLC

70 :DETAILS OF PAYMENT

'p .5
71 :DETAILS OF CHARGES DIRECT PAYMENT METHOD

ERROR MESSAGE

I TEST PLAN NOTES/SCRIPT

I Note - Suppleaentary Payments soreen should not appear

Figure 23-2. T-PLAN Test Model Sample Print for Input Ref

23-7

T-PLAN PART II f

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1 0
TEST SPECIFICATION / INPUT REFERENCE MATRIX

TEST SPEC REFERENCE : FIN

INPUT REFERENCE DMN Deal Menu
INPUT REFERENCE EE Foreign Exchange Data Enquiry
INPUT REFERENCE EIN Foreign Exchange Deal Input

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1 -

TEST SPECIFICATION / OUTPUT REFERENCE MATRIX

TEST SPEC REFERENCE FIN Foreign Exchange Deal Input/Summary Reports

OUTPUT REFERENCE DEL Deal 0
OUTPUT REFERENCE PBS FX Batch Summary Report
OUTPUT REFERENCE FIS FX Deal Input Summary Report

INDEX OF OUTPUT REFERENCES AS AT 04/01/80 VERSION 1.1

INPUT INPUT S
REP NAME

DHN Deal Menu
EAI Foreign Exchange Deal lst Authorise
EA2 Foreign Exchange Deal 2nd Authorise
MAM Foreign Exchange Deal Amend
EDE Foreign Exchange Deal Delete
ENE Foreign Exchange Deal Enquiry

MIN Money Movement Input
STA General Deal Status Enquiry Screen

INDEX OF OUTPUT REFERENCES AS AT 04/01/80 VERSION 1.1

OUTPUT OUTPUT
REF NAME

APL Monthly P&L Report 0
ATP Trial Balance Report
BET Bulked Entry File
CAB C&N Average Daily Balance Summary
CAC Customer Acount
CCY Foreign Exchange Rates

SPA System Parameter Data S
SWI SWIFT Messages

Figure 23-3. T-PLAN Test Model Input & Output References for Test Spec FIN

23-8

PART II T-PLAN

NO SCREEN DATA TESTING (NSD)
SOURCE INPUT REF EIN Foreign Exchange Deal Input

TEST SPEC REF FIN PATH NUMBER : 01 SEQUENCY NO. 0060

CONDITION REF TEST NOTES TESTED OK?

FXI21A Orderer Client - 32345
FXI21B Orderer Client - Non Swift I(
FXI21G Orderer Client 68213 - Account With Bank 99-00-88
FXI21H Account With Bank NADGGG02
FXI21I Account With Bank 02356
FXI21J Account With Bank 80197
FXI21K Account With Bank Non Swift &@

FXI21P Details of Payment spaces - Details of charges BEF

Figure 234. T-PLAN Test Model No Screen Data Testing for FIN

OUTPUT DATA PROFILE NAME : DEAL DATA PROFILE
MAJOR SUB TIME DATA PROFILE
DP KEY KEY FRAME (PATH) REF

OUTPUT DATA PROFILE REF : DEL 003 00 01 DEL0030001
TEST SPEC REF : FIN

NOTES
Deal should be deleted after batch overnight run

DEAL NUMBER Syst gen DEAL TYPE SN DEAL DATE 271290
COUNTERPARTY 00203

PURCHASED CURRENCY GDP AMOUNT 10,000,000.00
SOLD CURRENCY USD

CROSS RATE 1.735
STERLING RATE 1.75

VALUE DATE 311290 OPTION FROM TO
CONFIRMATION METHOD S PAYMENT METHOD S

DEALING METHOD i0 COVER PAYMENT IF REoUIRED N
SWAP BASE RATE CCY IF NOT US$

A-TYPE DEAL SPOT RATE FLAT CURRENCY
OUR RECEIVING AGIET C 12973NN0505

OUR PAYING AGENT 227349N0202
THEIR RECEIVING AGENT 45798

BENEFICIARY ACCOUNT
INHIBIT ADVICE TO RECEIVE?
71 DETAILS OF CHARGES DIRECT PAYMENT METHOD

DEAL STATUS 01 CONF STATUS 01 PAYMENT STATUS 01

Figure 23-5. T-PLAN Test Model Output Print for FIN

23-9

T-PLAN PART II

SPECIFICATION INSTRUCTIONS AS AT 04/01/80 VERSION 1.1
TEST SPEC REF : FIN Foreign Exchange Deal Input/Summary Reports

PAGE NUMBER : 01 AUTHOR : THEO CCUPIER

TEST SPECIFICATION PREREQUISITES AND INSTRUCTIONS

This Test Specification tests the following functionality in the IBM

system: -

Foreign Exchange Input
Foreign Exchange Enquiry (Part)
FX Batch Summary (Part)
FX Deal Input Summary (Part)

Note - Only part of some of the above functions are tested in this
Specification

The Test Spec has Input for the following days in the cycle:-
01, 05

The Test Spec has output to be checked for the following days
01, 05

Before commencing testing for PATH 1, ensure that the following test
environment is in place:-

- System Test Libraries correctly loaded
- System Test Base Data files correctly loaded

- Customer and Account files
- Rates files
- User & Password files
- System parameter file data for Day 1

TEST PATH SUMMARY REPORT AS AT 04/01/80 VERSION 1.1
TEST SPEC REF :FIN Foreign Exchange Deal Inpuat/summary Reports

PATH NMnBER 05

Logon to the system with User-id & Password X1AA
Enter Script Input from Path 05
Ensure that a note is made of all Deal Numbers allocated
After Entering all data and PRIOR to running Day 5 Batch Reports
Print DEAL file and check against data profiles

After running Batch Reports for Path 05 Check that Deals are correctly
deleted from DEAL file as noted on data profiles

TEST SPECIFICATION TESTING LOG BY PATH
TEST SPEC REP :FIN Foreign Exchange Deal Input/sumary Reports

PATH NUMBER TEST DATE
01 FIN01 19/09/91

TESTER : GAN RETEST REQUIRED : yen

COMMNTS
Service Query 1 raised

Figure 23-6. T-PLAN Test Model Test Specification Information for FIN

23-10

•= • i ,,II l I I |I I

PART II T-PLAN

Cycle (02)/Path Overview Report
TEST CYCLE/PATH OVERVIEW AS AT 04/01/80 VERSION 1.1

CYCLE /PATH NUMBER 02
RUN SEQUENCE NO. 001

TEST SPEC REF : I'1 Money Movement lot Authorisation
CON•MENTS

Initial MN lot Auth testing
set-up of deals & lst auth

TEST CYCLE/PATH OVERVIEW AS AT 04/01/80 VERSION 1.1

CYCLE /PATH NUMBER 02
RUN SEQUENCE NO. 003

TEST SPEC REF : FA2 Foreign Exchange Deal 2nd Authorisation
COMMNTS

'Base Dataw setup for FX2 Testing

Cycle (02)/Pah Summary Report

000 BAS Base data set-up
001 FF1 Forex Fixed Deal 1st Authorisation
001 W41 Money Movement lst Authorisation
001 PAl Foreign Exchange Deal lot Authorisation
001 Dili Discounted Items 1ot Authorisation
002 DEE general Deal Enquiries
003 FAD Foreign Exchange Deal Ahmend/Delete/Write-Off

003 FA2 Foreign Exchange Deal 2nd Authorisation

Test Specificaono~ InputlCondhon Coss Reference Repovtfor PIN

FP112A

PXZl2C

FZI13A
P1113B
FIl14A
P2114B

rX120A

TEST SPECIFICATION INPUT BY PATH SUMMARY AS AT 04/01/090 VERSION 1.1
TEST SPEC REP : FIN Foreign Exchange Deal Input/Sumary Reports

Figure 23-6 continued: T-PLAN Test Model Test Specification Information for FIN

23-11

T-PLAN PART II •

PATH NUMBER 01 FUNCTIONAL INPUT
CONDITION REF REF

SEQUENCE NO. 0005 NOXREF DN
SEQUENCE NO. 0010 FXI01A EIN
SEQUENCE NO. 0020 FX101B NSD

FXI02R
I1102C
FXI02D

SEQUENCE NO. 0110 71511
FXE17

PATH NUMBER 01
- ---------

TESTED BY * DATE ' CHECKED BY * DATE 1
- -- ----------------------------- ---- ----- -- --- I

____----------------------------------+

PATH NUMBER 05 FUNCTIONAL INPUT
CONDITION REP REF

SEQUNC •NO. 0005 DW
NOXuR

PATH NUMBER 05

TESTED BY a DATE * CHECKED By DATE I

7Wu Spedfwcaflo Recetio Reprt

TEST SPEC REF 2 fIN Foreign Exchange Deal Input/Sunary Reports

RELEASE NO. 1.0 INVALID/VALID V
FUNCTIONAL CONDITION RE?3D3NCE

711241
1P1243

711150
71115PFXXISR

IP124H
.FUNCTIONAL CONDITIONS NOT CROSS REFERENCED AS AT 04/01/S0 VERSION 1.1

Figure 23-6 continued: T-PLAN Test Model Test Specification Information for FIN

23-12

I II i I II II III I I0

PART II T-PLAN

INDEX OF FUNCTION REFERENCES AS AT 04/01/80 VERSION 1.1
------aaaaaaaaaaaaa -- - - - ----------- -aaaaaaaaaaaaaaaaa•aaiaaaaaaaaaa-aaaai-eeeee

FUNCTION FUNCTION NAME
REF

SYSTEM : IBIS
OVERALL FUNCTION : Call 6 Notice - Money Movement

MI Money Movement 1st Authorise
M(2 Money Movement 2nd Authorise
tMA Money Movements Amend
iBI Money Movements Delete
MME Money Movements Enquiry
MKI Money Movements Input

FUNCTION FUNCTION NAME
REF

SYSTEM : IBIS
OVERALL FUNCTION . Position Enquiries

PCU CustoMer Positions
PCY Currency Positions
PDL Dealer Positions

Money Movement Enquiry
INDEX OF INPUT REFERENCES AS AT 04/01/S0 VERSION 1.1

INPUT INPUT
REF NAME

DNA Deal Menu
Ehl Foreign Exchange Deal lot Authorise
EA2 Foreign Exchange Deal 2nd Amthorise
RAM Foreign Exchange Deal Amend
EDE Foreign Exchange Deal Delete

Money Movement Enquiry
INDEX OF OUTPUT REFERENCES AS AT 04/01/S0 VERSION 1.1

OUTPUT OUTPUT
REF NAME

CIR C&N Interest Rate Change Notification
CN8 CaN Daily Sumary Reports
CUS Customar
DDD DUR Daily Detail Report
DEL Deal

Figure 23-7. T-PLAN Test Dictionary Function, Input, Output Reference Index

23-13

T-PLAN PART II 0

T-PLAN TEST DICTIONARY AS AT 04/01/S0 VERSION 1.1
TEST SPECIFICATION / FUNCTION REFERENCE MATRIX

TEST SPEC REFERENCE CIR Call & Notice Interest Rate Change Notification
FUNCTION REFERENCE CIR CIN Interest Rate Change Notification

T-PLAN TEST DICTIONARY AS AT 04/01/S0 VERSION 1.1
TEST SPECIFICATION / FUNCTION REFERENCE MATRIX

TEST SPEC REFERENCE FIN Foreign Exchange Deal Input/Sumary Reports

FUNCTION REFERENCE PBS TX Satch Sumary
FUNCTION REFERENCE PIS Fl Deal Input Summary
FUNCTION REFERENCE PXE Foreign Exchange Enquiry
FUNCTION REFERENCE FXI Foreign Exchange Input

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / INPUT REFERENCE MATRIX

TEST SPEC REFERENCE FIN Foreign Exchange Deal Input/Summary Reports

INPUT REFERENCE DSN Deal Menu
INPUT REFERENCE RAI Foreign Exchange Deal Ist Authorizse
INPUT REFERENCE :A2 Foreign Exchange Deal 2nd Authorise
INPUT REFERENCE ZAK Foreign Exchange Deal Amend
INPUT REFERENCE t ZEN Foreign Exchange Deal Enquiry
INPUT REFERENCE ElM Foreign Exchange Deal Input

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / OUTPUT REFENCE MATRIX

TEST SPEC REFERENCE FIN Foreign Exchange Deal Input/Sumnary Reports

OUTPUT REFEREN DIL Deal 0
OUTPUT REFERENCE PBS FX Batch Sumary Report
OUTPUT REFERENCE S FIS FX Deal Input Summary Report

Figure 23-8. T-PLAN Test Dictionary Functions, Inputs, Outputs Used In FIN

CONDITIONS IMPACTING ON OUTPUT DATA PROFILES AS AT 04/01/S0 VERSION 1.1 •
ACROSS ALL TEST SPECIFICATIONS

DATA PROFILE RET : DEL002
PATH 01
TEST SPEC Foreign Exchange Deal Input/Sumary Reports

DATA PROFILE REF i DEL0020001 CONDITION REF : F1111

SOURCE INPU KE(SP
FIN01004OEIN

Figure 23-9. T-PLAN Test Dictionary Condition Impact on Data Profiles

23-14

S; "m"• m'm m.mii mllm mmnliii I l - Imm I I i t i0

PART II T-PLAN

?-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
FUNCTION CHANGE IMPACT ANALYSIS REPORT

FUNCTION REF MHE Money Movement Enquiry
T iST SP-C-R-F---- - -Me Meen l u-i-e---- - - i -

TEST SPEC REF :N1 Money Movement lot Authorise
TEST SPEC Rzr : 412 Money Movement 2nd Authorive

TEST SPEC REF 1 A Money Movement Asend/Delete/Write-off
TEST SPEC REP N4MI Money Movement Input/Summary Reports

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
INPUT CHANGE IMPACT ANALYSIS REPORT

INPUT REF EIN Foreign Exhange Deal Input

TEST SPEC REP DEE General Deal Enquiries
TEST SPEC REP FA1 Foreign Exchange Deal lot Authorisation
TEST SPEC REP :A2 Foreign Exchange Deal 2nd Authorisation
TEST SPEC REP FAD Foreign Exchange Deal Amend/Delete/Write-off
TEST SPEC REP FIN Foreign Exchange Deal input/Summary Reports
TEST SPEC REF PEN Position Enquiries

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
OUTPUT CHANGE IMPACT ANALYSIS REPORT

OUTPUT REF -FIS FJ Deal Input Summary Report

TEST SPEC REP : FIN Foreign Exchange Deal Input/Summary Reports

Figure 23-10. T.PLAN TeM Dictionary Chanjs Impact for Function MME, Input EIN, Output

rr2 Forex Fixed Deal 2nd Authorisation
ITA forex Fixed Deal Amend/Delete/Write-off
1041 Money Movement lot Authorisation
1M2 Money Movement 2nd Authorlsation
NMI Monty Movement Input/Sumnary Reports
MMA Money Movement Amend/Delete/Write-off
DII Discounted Items InputSumary Reports

NWD Non-Working day

TEST SPECIFICATIOm INDEX AS AT 04/01/080 VERSION 1.2

TEST TEST SPEC AUTHOR
SPEC NAME
REF

rFs Btach F1 SWIFT Message Generation
PUP Batch Position Update/lReport

Figure 23-11. T-PLAN Teot Dictionary Test Specifcation Index

23-15

T-PLAN PART II •

SERVICE QUERY I AS AT 13/05/92
NUMBER TINE OF PRINT

00002 13:44:27

SYSTE : IBS PHASE/PACKAGE : 1.1 SOFTWARE BUILD : 01
DESCRIPTION

Should not the TX Supplementar Screen only be Presented if 0
The Program Spec does not make it clear

AMR RAISED BY P4 WHO RAISED BY EHG DATE RAISED 01/09/91
PRIORITY CODE BY 02/09/91

SERVICE QUERY C(NIDITS

No mntion is in the program spec regarding the criteria for 0
display of the Fl supplementary details screen
BilG - PGll

Spec amended accordingly
CDT - DES

No action for ST? - Design spec specifies this

SERVICE OUERY STATISTICS
rnmm------m

i DESIGN 0.10 DESIQG 0.10 DXSIQI 0.00 I
I PROC 0.00 PROG 0.00 PROC 0.00 I
I s E 0.00 SYS TEST 0.00 YS TEST 0.00 I
I Oen= 0.00 OT 0.00 on=3 0.00 1
I TOTAL 0.00 TOTAL 0.00 TOTAL 0.00 I

SERVICE QUERY ACTION J AU RISED BY IF
SERVICE QUZER CLRSSIFICA2101 03 MAJTOR DOCW ATXZON ERROR

Figure 23-12. T.PLAN Test Management Service Query Report for SQ 00002

TEST SPRCIFICATU•N/SoZVICZ OUEY LOG

TEsT SPEC : r3i - Foreign Deal Input/8&Mnry Reports

I-- SPZC UPDATE DEILS, --REGRESSION TEST

ISO Raised Date I I
No. for Logged -U-pdated -- Chocked-- Reqn. Test

Test Reqd By Date By Date Test fy
Spec? ? Reqd.?

100001 yes 19/09/91

100002 no 01/09/91 1

Figure 23-13. T-PLAN Test Management Test SpwSQ Log for FIN 0

23-16

PART II T-PLAN

SERVICE QUERY FREQUENCY G CLEAR UP REPORT

Period Service Oueries#

From To Raised Signed-off

10/08/91 - 17/1081/1 0 0
26/08/91 - 25/08/91 0 0

SERVICE QUERY ANALYSIS BY CLASSIFICATION WITHIN SCHEDULE

SYSTEM PACKAcE I SOFTmWAR SERVICE OQURY CALSSIFICATION QUANTITY
/NuASE IBUILD

IDS
S1.1

I I I 1~01 I I
1 03- MAJOR DOCUMENTATION ERROR I

I 07- MAOR PROGRAMMOING ERROR 1

TOTAL for Software Build 01 2

TOTAL for Package/Phaso 1.1 2

STOTAL for Sy•tin IS

S OVERALL TOTAL 2

I

I

Figure 23-14. T-PLAN Test Management Service Query Reports

23-17

I

T-PLAN PART II 1

OVERALL PROGRESS AS AT 16/03/92

TASK TASK [----Totals-----] Percent

CODE DESCRIPTION ORIG ACT OUTST Complete

PEASE/PACKAGZ 1.1 SOFTWARE BUILD 01

DEE General Deal Enquiries 13.75 5.00 8.25 37.74 0

FAl Foreign Exohange Deal let Authorizsa 10.50 5.75 5.00 52.38 %

FIN Foreign Exchange Deal Input/Summary 13.75 11.00 3.75 72.73 0

SOFTWARE BUILD TOTALS 37.50 21.75 17.00 54.67 4

PHASE/PACKAGE 1.1 SOMWARE BUILD 02

FA2 Foreign Exchange Deal 2nd Authorisa 15.75 2.00 13.75 12.70 0

SOFTWARE BUILD TOTALS 15.75 2.00 13.75 12.70 %

PRASE/PACKAGZ TOTALS 53.25 23.75 30.75 42.25 %

OVERALL TOTALS 53.25 23.75 30.75 42.25 &

Figure 23-15. T-PLAN Overall Progress for IBS

23-18

PART 11 T-PLAN

0.mI C, I I I
101 lC! 1l B

IN. I B 00I 1 0 10 10

01 1 01 0 VlOBC

I~~C ItIII I

1 01 11 10%0

0M 0) 0 01

I to 0 NII 01 1 l ll l o

I ~ ~~ ~ II 1A 00 01 0 10 1 1

I~I C;d I I I It

t4B o I C3 I 1 0 -11 a 1

IWEM 14 1 B A I I I
I.4 1. I a. to OCZ I i i in I I in I

B4BIs Iwo B" B .M14 I. *1 * l 1 I B
B IU I M -. 4 %a to00 0 I
EM1 1 I II N InIII I II

B4BW. 10 4 C!4B~ I I I

0M VN 14 m 1 1 I tI II

4j i I I I I

0 II 00 I
m 4 C0 1mI I C4 I i

li I! It 1 : .B
Born~C I, 1.1 0.10 0j* ~ 0.9 .9 1 l19B0

IM I aS W 00 1 to 19 C'010 01 I B

I c a I0. 5B A) j co 1 0010 11010 0, I0I

IM Infl 00 W I I In 0 0U_11 1 0 W
itt 1..~ MMI ~I B U m 0.4141 .- I11I4B

I~~~~1 C!144 ~ OB~* -

CI I I
*~~ ~~~ B4 lU ~ E j B 9 0 9 9 1 1 101 0

B I 1041~~~I.4 e4~I 14 I ** * I 1 l

B B 106 SOuI II I 1 1
I E~ IW~d MMI EW I I I II II

B B 9. 114B M p~I nI~~ui II 239 I19,

T-PLAN PART 11

0U~ a kn in an a

H, I I

*1 *1 II mI I

in0 i I in II
II0 M In II II I

ela,~s 011 0 10.

50 I 1~i I 41 g

waI I X34 14

*gCg It~ 1

VA0 It W! I g, gt 9 Ii. -

"EM 1 1mgn 0 1 1an gang

10 m 0 ItI I Ila 11

0 l '1 0 00 Cc Lon01 %n C,101 10 1

C! a 10 0 a4 P0 1 1 1Pl 1 l -

00 0 1i I i I I

Muu
CMgt m o ~

dI IN M

U) cogog agogog gg a

~~~ .g4i .n4gn amln FA 10

~jl 1541~g~ggg~gg~0
1101 SA a@ I

04 z
M I 

m 
II I

16-81S , of 000 01 0 0

an~nogo 230201010



PART 11 T-PLAN

H, m

ind o ~ 0n 0 t 0 i U,11 U

U 41.4 IW E~1 1 4 0%0 0 -

11~ 1.0 ~ coo 0 1 . M ai1
in4 0 1f Ci I l

. I. C! 1

E4~n~ in1 a n n 1
in f" In ANI I I

1 0 1 rf I I I I

o i0oi 1 1 0 1 II %n In

11 a 0U 0I V40 1it~n

I a E4I

a- In 0 1I

el 14 *l 1 .11 I1

. 10 I :¶f I
II E .; II I t

0V4 000O 0 0 0 0 10 1

Iw174 1 *cc01 01 0 101 1 01 101 C,

m I II II I

MM~~~~C W!l~iI 001(lm

NI0 1% 10 1 0 1 11 1

rI '010 CD

14 C 14 ,
[41 00 0 0 10 1 0

too so 0010 01011o1w

.4 4 I
KU II I 1.1 I 1NI 4

4 if

I AI

23I 21



T-PLAN PART 11

101J *.* 0 10 0p 0

E~I 0 000 0 00

I14~ 000 0 0 0 a 0

0 000 0

1 0. C4 I1 1 i 1
ý In in

*I 134 W, *II IH ,~ 144~ " rIfl " 10
1101 C I C I I I I I

a 001 *l 0 i 101 10110

HO C, C! I I0

AI In n IN,1 Inn cc,
I ; m rllIl 410 I 101- 01

110

1 I I Ny fl 1 1 161 10 &o 1 n 101 t101I

* I co 0

114 Inlm; l CU~ 101 10

001 1 0 01 0 0
1 14 00010 1 01 10 10

1 V!E

Of I H II I

Is,

mm A010 010 A0 0

El H I I 4

flU~~~- cm 0000,0 1 1 0

0000 lowII~ 'o

In

I % H 0
a aw Aw a

023-22



PART II TBGEN & TCMON

24. TBGEN and TCMON

TBGEN generates test drivers that facilitate unit testing and bottom-up integration test-

ing. The latest version of this tool includes the generation of stubs so that top-down integra-

tion testing is also supported. TBGEN's companion tool, TCMON, provides structural

coverage and timing analysis.

24.1 Tool Overview

Until recently, TBGEN and TCMON were marketed by ICL Personal Systems, former-

ly Nokia Data Systems. They are now available from Testwell Oy. These tools have been

commercially available since 1986 and 30 permanent multi-user licenses have been sold.

Designed to be hardware architecture, operating system, and compiler independent, these

tools are available for VAX/VMS, Sun-3/SunOS, PCs under MS-DOS and OS-2, and Ra-

tional machines. There are some minor difference between the versions available on differ-

ent operating environments; for example, unlike the Sun-3/SunOS versions, the VAX/VMS

tools do not allow escaping to the operating system command level. At the time of exami-

nation, TBGEN prices started at $2,850 and TCMON at $2,300. The versions examined

were TBGEN Version 3.1 and TCMON Version 2.2 operating on a VAX/VMS platform.

24.1.1 TBGEN Overview

Using Ada program unit specifications, TBGEN generates a test driver and a command

file for compiling and linking this test driver with the units under test. The user can control

the size of the resulting testbed by specifying particular subprograms or program objects to

be excluded. A log file automatically records pertinent information about testbed genera-

tion. The user executes the resulting testbed, interactively specifying the desired calling se-

quence and subprogram parameters, and observing the results. (Since the testbed takes

standard input from the keyboard for interactive communication with the user, some diffi-

culties may be encountered if a module under test also uses standard input.)

A powerful set of Ada-like testbed commands is provided. For example, testbed vari-

ables can be declared and their visibility directly controlled, and many of the entities de-

clared in Ada specifications can be accessed. Additional commands display information

based on current testbed settings and testbed status, or cause user inputs and testbed outputs

to be copied to a trace file for later examination. Instead of using a testbed interactively, the

24-1



TBGEN & TCMON PART II 1

user can specify testbed inputs in the form of a script file. Scripts may be user developed or

generated from a copy of previous testbed inputs. Conditional and iteration control struc-

tures, along with fixed and variable breakpoints, are provided for scripts. Assertions are 0

provided for automatic checking of test results against expected results.

24.1.2 TCMON Overview

TCMON instruments the contents of user-selected files with statements that act as mea-

surement probes. These probes provide for coverage analysis at the segment, condition, and

subcondition levels. In addition to structural coverage, probes provide for segment execu-

tion counts and true/false counts of conditions and subconditions. They also provide timers

that allow capturing execution times at the program unit level and the measurement of times

between user-specified events, Each subprogram can be instrumented for different types of

monitoring. A test monitor is generated. A command file for compiling the monitor and in-

strumented code and performing necessary linking is also generated, together with a log file 0

providing information about instrumented files and units generated. The monitor supports

a command-driven interface that provides the user with commands such as those required

to reset all counters and timers, save and append measurement data, produce a profile list-

ing, and run the instrumented program. Where necessary, this interface can be omitted by •

inserting TCMON commands in source files as special comments and generating a dummy

monitor. Data generated by the instrumentation is recorded in a profile listing. This gives

detailed information about counter and timer places and values, and a histogram of state-

ment list execution counts is included. The profile listing also contains information that can

be used to estimate the influence of instrumentation statements on measured time. The TC-

MON Postprocessor (TCPOST) processes the profile listing to generate summary reports

at either the package or subprogram level.

Timers may include invalid data when two or more tasks call the same instrumented

subprogram or are of the same instrumented task type. The same is true for recursive pro-

cedures. If this happens, the affected timers are flagged in the profile listing. Although ge-

neric procedures and packages can be instrumented, multiple instances are not

distinguished. Also, when returning from a function, it is not possible for a timer within the

function to record the time spent in the evaluation of the return expression. Exceptions,

which are invisible to the instrumentor, may also distort timing results.

24-2



PART II TBGEN & TCMON

24.2 Observations

Ease of use. The user interacts with TBGEN and TCMON through command interfaces

that are well supported with prompts to guide a user through necessary steps. Context-sen-

sitive help is available, together with general descriptions on user-selected topics. Error

messages are informative, though no specific help for resolving an error is provided; mes-

sages are written to both the display and the appropriate log file. When erroneous input is

detected, execution of the current command is terminated and the rest of the current input

line ignored. When a test script is being used in TBGEN, processing will continue with the

next line. Command files are provided to relieve the user of some repetitive manual labor.

Although the use of TCMON requires no special knowledge, the TBGEN command-inter-

face requires some knowledge of Ada. All reports are well-structured and clear, with useful

history-keeping information.

TBGEN is tailorable in several ways. The SPECIAL command implements environ-

ment or installation specific commands. Configuration parameters specified in a system file

can be changed, essentially to modify default file names. A system file gives the specifica-

tion for package STANDARD which can be modified to reflect some of the options avail-

able to Ada compilers. The template files used in generating testbed components can be

changed.

Some aspects of TCMON can also be altered by modifying the template file used for

generating auxiliary Ada units and the command file. This template file also contains the

configuration parameters that can be changed to alter default values. The TCMON User's

Manual provides suggestions for modifying the parent type for counter variables, measur-

ing CPU time instead of default elapsed time, and including other cost functions.

Documentation and user support. The documentation is well-written and guides a

user through using each tool. The vendor provided good support and answered all questions

quickly and well.

Instrumentation overhead. TCMON is designed to minimize the introduction of un-

necessary instrumentation. It not only allows the user to select the files whose contents are

to be instrumented, but allows each file to be instrumented differently. TCMON also allows

the user to select between SAFE or UNCHECKED modes for the segment counter. The

vendor cites a 50% to 100% increase in code size for full structural instrumentation. For the

Ada Lexical Analyzer Generator, full structural instrumentation of all units gave a size in-

crease of 120%.

24-3



TBGEN & TCMON PART II 0

Ada restrictions. TBGEN accepts any valid Ada code. Expressions, however, are

skipped with the result that the type of an array index cannot always be determined auto-

matically and the user may be asked to supply this information. Tasks, task types, and de- 0

pendent entities are ignored and cannot be accessed in testbeds directly. Similarly, testbeds

do not provide the user with access to objects of limited type, functions with results of lim-

ited type, array objects with a constrained array definition, and constrained subtypes of a

type with discriminants. TCMON may misinterpret overloaded operators returning boolean

values when these are used in conditions.

Problems encountered. No significant problems were encountered during the exami-

nations of these tools.

24.3 Recent Changes

TBGEN version 3.0 has been ported to Apollo/Domain environments. An upgrade, ver- 0

sion 3.1, is available on a limited set of platforms. The notable enhancements included in

the upgrade are a recording facility for user input to allow automatic repetition of interac-

tive test sessions and a blockwise USE command.

In November 1991, TBGEN version 4.0 was released and is now available for all the 0
previous environments, except Rational machines. This version introduces the generation

of stubs to facilitate top-down testing. TBGEN is the only identified tool that provides this

powerful and valuable capability.

TBGEN and TCMON are also available through DDC International as an integrated

part of its CASE Toolbox product. The Sun/SPARC version of these tools is also available

through DDC International.

Under certain circumstances both tools can be licensed in Ada source code form with 0

connection ports to Gould, Apollo/Domain, and some NEC machines (Unix environments).

24.4 Sample Outputs

Figures 24-1 through 24-6 provide sample outputs from TBGEN and TCMON.

24-4

0A



PART II TBGEN & TCMON

-- Script file USR:[ADATEST.TBGEKUCALENDAR.REC;I

-- Created at 1991-08-15 10:37:14
-- Created by Test bed CAL_BED generated at 1991-08-15 09:00:03
SET TRACE FILE calendar.tra
DECLARE

USE calendar
moment time :- clock
currentyear : year
current month : month
theday : day num
seconds : daydura

BEGIN
split(moment, current yeaz, current.month, the-day, seconds)

moment :- time of(current_year, current month, 15, 0.0)
DISPLAY day(moment)
moment :- add l(moment, 86400.0) - add_1 equiv to W4"

split(moment, currentyear, currentmonth, thefday, seconds)
ASSERT theday - 16 AND seconds - 0.0

now : time clock
later : time -clock
ASSERT le_l(now, later) - true - l1.1 equiv to 'C-'

moment :-time of(1991, 2, 28, 0.0)
ASSERT NOT EXCEPTION

moment :- time of(1991, 2, 29, 0.0)
ASSERT EXCEPTION(time error)

END
SET TRACE CLOSED
SET RECORD CLOSED

Figure 24-1. TBGEN Record File

24-5



TBGEN & TCMON PART II 0

Softplan (R) Ada Tools *

* TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems
* Text Bed Trace Listing

Test bed generated at 1991-08-15 09:00:03. Time is now 1991-08-15 10:37:22

CAL-BED) DECLARE
CAL ...ED) USE calendar
CrL BEJ) moment : time :- clock
CALBED) currentyear : year
CAL._BED) currentmonth month

CAL BED) thefday : daynum
CAL-BED) seconds : dayfdura
CAL-BED) BEGIN
CAL-BED split(moent, currentyear, current-month, the-day, seconds)

YEAR (out) - 1991
MONTH (out) - 8
DAY (out) - 15
SECONDS (out) - 38266.8500

CAL-BED)
CAL BED) moment :- time of(currantyear, current-month, 15, 0.0)
CALBED) DISPLAY day(moment)

15

CAL -BED) moent .- add_ 1(moment, 86400.0) - add.1 equiv to n+'

CALDBED) split(moment, currentyear, current-month, the day, seconds)
YEAR (out) - 1991
MONTH (out) - 8
DAY (out) - 16 0
SECONDS (out) - 0.0000

CAL-BED) ASSERT the day - 16 AND seconds - 0.0

C&L)BED
CAL-BED) now : time -clock

CAL BED) later : time :-clock
CALBED) ASSERT lsl(now, later) - true - le__1 equiv to (-"

CALBED)
CALBED) moment 3- time of(1991, 2, 28, 0.0)

CAL-ED) ASSERT NOT CEPTION
CALED>
CAL-BED) moment -- time of(1991, 2, 29, 0.0)

*** exception CALENDAR.TIDMEERROR
CAL-BED) ASSERT EXCEPTION(time error)
CALDBED) END
CALBED) SET TRACE CLOSED

Trace closed at 1991-08-15 10:43:46

Figure 24-2. TBGEN Trace File

24-6

• m m m s i i N l i l m



PART II TBGEN & TCMON

"* Softplan (R) Ada Tools
* TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems
* Test Bed Generation Log File

Licence identification of the generator:

Test bed tineStamp... : 1991-08-15 09:00:03

Test bed name ........ : CAL BED
Generated Ads files..: cal'.ada
Command file ......... ; calCND.COM

Analysed source files:
File: TOGENSYS.STD

File: calendarspe

The symbol table

package STANDARD/8001/ is
type BOOLEAN/I/ is (

FALSE,
TRUE) ,

type INTEGER/2/ is IntegerType;
type FLOAT/3/NoV/ is FloatType;
type cHARA CZR/4/NoV/ is (

0);
subtype NATURAL/5/NoV/ is INTEGER (2)
- Type Class -> IntegerType
subtype POSITIVE/6/NoV/ is INTEGER (2)

- Type Class -) IntegerType

0 function I- ,/2015/(
LET:in CALENDAR.TIMZ <11);

RIGHT in CALENDAR.TINM (11>)
return BOOLEAN <1) I
- Alias Name GE_1

TIiM•OR/6006/ : *Zeception;

end CALENDAR;
end STANDARD:

Execution of the gene*rato successfully ended at 1991-08-15 09:01:02

FIgure 24-3. TBGEN Generated Log File

24-7

0u m mmmmmlllllIIIf l



TBGEN & TCMON PART II 0

* TCHON System Version 2.2, (C) Copyright 1987 by Softplan
"* Test Coverage Monitor / Program Bottleneck Finder *
"* Execution profile listing *

Counters Timers

LINE EXECUTION LTBGEN/TCMON- PLACE START/ END/ AVERAGE
NO. COUNTS VEL DESCRIPTION TRUE FALSE TIME TIME

Source file -) [-.adalex2)ll.,decls.ada Instr - (A,N,N,N)
Source file -) 1 ooampile _dumy.ada Instr > (A,N,N,Y)

23 .............. I proc LLCOMPILE
120 .............. 2 funs LLFIND
124. .. >>>> 2 begin 198 0 ?
127"****)>)>>> 3 while loop 898 763 ?

Condition 898 63

Source file -> (-.adalex2]llsup spec.ada Instr -> (A,N,N,N)
Source file -> 11 supbody mt.ada Instr -- (A,YT,Y)

50 .............. 1 pack LLSUPPORT 0 0.0000
97 .............. 2 fune ALTERNATE 14 0.0000 0.0000

170 .............. 2 funs CHAR_RANGE 6 0.0013 0.0078
17S*****) 2 begin 6 0 ?
176 TUR_ CHAR RANGE 6 0.0013 0.0078
178* 3 if then 3 3

Condition 3 3
101*** 3 if elso 3 3
l83****>>>> 4 for loop 62 62
le8****) 3 return 6 0
204 .............. 3 proc COMPLETZALT 4 0.0039 0.0156

Median of nonzero counter values 8
One asterisk ( * ) <=} 1
Number of counters - 539
Number of timers - 36
Number of instrumented (sub)conditions- 206
Minimum measurable time interval - 0.0001
Estimated cost of one timer operation - 0.0006
Estimated cost of one counter operation - 0.0000
The instrumentation was done 1991-08-14 13:15:27
This listing was produced 1991-08-14 13:32:48

Data files,
NAME -)sampleTIK. dat

Figure 24-4. TCMON Profile Execution Usting

24-8



PART II TBGEN & TCMON

"* TCHON System Version 2.2, (C) Copyright 1987 by Softplan t
"* Test Coverage Monitor / Program Bottleneck Finder
" Log of TCMON preprocessor execution

Date and time -> 1991-08-14 13:15:27

Prefix -, SAMPLE
Generated files -) sample'.ada
Main procedure -* enot specified*
Code pattern file -) PATTERNS.TCOE

Source ) 11_supbody_mt. ada
Target ) sazplellsup bodyt.ada
Instrumentation -> ( INC._NODE -> UNCHECKED

COUNTERS -, ALL
AUTOTI1MES -) YES
MANUAL TIJWS -> YES

PANDý_COMANDS -) YES

package body LL SUPPORT on line 50
function ALTERNATE on line 97

function MERGE_RANGES on line 103
function CHARRANGE on line 170
-- &S start timercharrange on line 176 expanded
-- && stop timer char range on line 187 expanded
procedure CONPLTMEPAT on line 192

summary information

Number of instrumented files - 6
Number of compilation units - 4
Number of body stubs - 2
Number of subunits - 2
Number of statement list counters - 539
Number of (sub)condition counters - 206
Number of timars - 36
Number of manual timer STARTs - 2 ... all expanded
Number of manual timer STOPs - 2 ... all expanded
Number of embedded commuud - 1 ... all expanded

Command file for compilation and linking -) SAMPLMD.CON

ERRORS: 0 WARNINGS: 0

Figure 24-5. TCMON Log File

24-9



TBGEN & TCMON PART II 1

TCMON System Version 2.2, (C) Copyright 1987 by Softplan

* Test Coverage Summary Report

PROGRAM STM COND SUB OVER
UNIT LIST CVRG COND ALL

CVRG CVRG CVRG

Source file -> l_lcopiledunmy.ada Instr -) (A,N,N,Y)
proc LLrCOMPILE

func LLFIND 88- 88- 8s - 88 -
proc LLPRTSTRING 0 - 0 - 0 - 0 -
proc LLPRTTOKEN 0 - 0 - 0 - 0 -
proc LLSKIPTOKEN b - 0 -
proc LLSKIPNODE 0 - 0 -
proc LLSKIPBOTH 0 - 0 -
proo LLFATAL 0 - 0 -
proc GET-CHARACTER 0 - 0 - 0 - 0 -
func MMA TOKEN 0 - 0 - 0 - 0 -
proc LLNEXTTOKEN 100 100 100 100 0
proc LLMAIN 62 - 47 - 47- 56 -
body LLCO.PILE 100 100

proc LL-COMPILE 49 - 44 - 45 - 48 -

Source file -> [-.adalex2]ll tokens.ada Instr -) (A,N,N,N)

pack LLTOKENS
proc ADVANCE 83 - 71 - 74- 79-

pack LL TOKENS 83 - 71 - 74- 79-

0
OVERALL SUMMARY 46 - 44 - 44- 46-

Number of partially instrumented or droppe4 compilation units : 0

This summary was generated at 1991-08-14 13:34:48, based 9z the TCMON
execution profile listing file sample-out.dat.
The profile listing was produced at 1991-08-14 13:32:48, and the actual
TCPRE instrumentation was performed at 1991-08-14 13:15:27.

There were 103 places out of 128 where the coverage percentage was
below the selected warning level 100 %,

0

Figure 244. TCMON Coverage Summary

24-10



PART II TCAT Series & TDGen

25. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TSCOPE, & TDGen

These tools are part of the Software TestWorks toolset that also includes SMARTS,

CAPBAK, and EXD[FF for regression testing. TCAT/Ada, TCAT-PATH, and S-TCAT/

Ada provide structural coverage analysis at unit and integration levels. TSCOPE provides

a graphical animation of the coverage achieved and software data visualization relating to

software quality, software performance, and software capacity. TDGen is a test data gener-

ation tool capable of generating test data randomly, sequentially, or using specified values

based on a user-defined template.

TRACKER and STATIC are two additional tools due for release in fall 1992. TRACK-

ER supports problem reporting. STATIC, which currently only operates on C code, per-

forms static analysis to look for such items as missing break statements, initialized or

unaccessed arrays and structures, loss of precision, and nonconformance with the ANSI C

programming language standard.

25.1 Tool Overview

Software TestWorks has been marketed by Software Research, Inc.for over five years.

Software Research also offers a range of software testing services, technical seminars, and

programming language validation suites. The tools are available on a large number of op-

erating platforms ranging from PCs to mainframes under Unix, MS-DOS, OS-2, and VMS

operating systems. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, and TDGen can each be in-

voked via a command line or through a windows-based graphical user interface in the OSF/

Motif environment. TSCOPE requires the graphical user interface. Prices depend on the

operating environment and, at the time of examination, started at $4,900 for TCAT, TCAT-

PATH, S-TCAT, and TSCOPE together. Over 2,500 licenses have been sold for this group

of tools. Prices for TDGen started at $500. Tool users are supported by both a newsletter

and hot-line support.

The examinations were performed on a Sun-4 copy of TCAT/Ada Ve=•icn 7.3, S-

TCAT/Ada Version 7.6, TCAT-PATH Release 7, and TSCOPE Release 2. These are all

recently released versions and still subject to beta testing. The final tool examined was TD-

Gen Release 3.2.

25-1



TCAT Series & TDGen PART II S

25.1.1 TCAT/Ada and S.TCAT/Ada Overview

TCAT/Ada provides for segment or branch coverage analysis at the unit level and

STCAT/Ada for call-pair coverage analysis at the module integration level. Both of these

tools, however, operate similarly. The user starts by instrumenting the code under test.

Some control over the extent of instrumentation to be performed is provided by allowing

the user to specify a list of modules that are to be excluded from instrumentation. STCAT/

Ada additionally allows the user to provide a file containing a list of function calls to be

excluded and a switch that allows the user to specify the number of characters in a function

name that shall be treated as distinct. In addition to the instrumented code, the instrumentor
yields a reference listing that shows segment (or function) markers and instrumentation sta-

tistics on a module-by-module basis.

The instrumented program is then compiled and linked with a provided run-time file.

Software Research provides different run-time routines to allow some flexibility in the be-

havior and performance of the instrumented program. For example, standard trace file pro- S

cessing is performed without internal processing or buffering, and the trace file is the full,

unedited trace of program execution. One option provides for in-place data reduction with

the entire coverage statistics being accumulated in memory and the trace file written after
the program exits. Another option allows the user to turn trace sampling on and off after a S

specified number of trace records have been registered in memory. A special multi-tasking

run-time routine is needed to handle instrumented processes that run in parallel; in this case,

a trace file is produced for parent and child processes.

When running, the instrumented program queries the user for the name of the trace file 5

to which execution data will be written. This trace file is subsequently used by a reporting

utility to list the overall coverage achieved, identify hit and not-hit segments, and produce

histograms showing the frequency distribution of segment or function hits, using either lin-

ear or logarithmic scales. All information is given in terms of the segment (or function) S

numbers shown in the reference listing. In the case of instrumented processes that run in

parallel, a special utility is provided for preprocessing of the generated trace file(s). This

utility splits tasking and non-tasking trace records into several files so that a trace file for

each task is created. •

The reporting function can handle several trace files at the same time and provides for

cumulative coverage analysis by archiving trace file information into an archive file. With

the exception of information on the sequence in which segments were hit, archive files con-

25-2



PART II TCAT Series & TDGen

tain the same data as a trace file. For cumulative reporting, information on newly hit or

newly missed items is provided. Finally, the user can restrict coverage reporting to a spec-

ified set of modules, request reporting on past coverage using only named archive files, and

cause named modules be deleted from the archive. The results of analysis can be used to

control the extent of subsequent instrumentation. This is achieved via a threshold switch

that causes any module with percentage coverage greater than or equal to this threshold to

be written to the de-instrumented file. (The user can specify the threshold value, or use the

default value of 85%.)

TCAT/Ada and S-TCAT/Ada both provide a utility for creating null archive files. This

is used to ensure that the coverage reporting covers all modules in a program whether or

not they have been executed. This prevents artificially high initial levels of coverage.

TCAT/Ada and S-TCAT/Ada also include an additional utility that takes the output of

the instrumentor to generate, respectively, directed graphs and call graphs of the code under

test. Both of these graphs are presented in textual list form unless the graphical user inter-

face is used. When the graphical user interface is used, a graphical representation of the ap-

propriate diagram can be supported by displays that show, for example, the associated code,

path statistics, and standards limits. In the case of S-TCAT/Ada, the call graph can be start-

ed from a user-specified root node and the outputs of instrumentation of several source files

can be combined to generate a call-graph for the whole program.

25.1.2 TCAT-PATH Overview

TCAT-PATH differs from TCAT/Ada and S-TCAT/Ada in that coverage reporting ad-

dresses the paths executed and is only provided on a single trace file; archive files are not

supported. As with the two previous tools, the user can limit the amount of instrumentation

performed by providing a file containing the names of functions not to instrument. TCAT-

PATH, however, allows the user to further limit instrumentation by inserting flags in the

code that switch instrumentation on and off; these flags are given as a special type of com-

ment and can be left permanently in the code. The user also can specify that instrumentation

of empty edges be suppressed.

In addition to the instrumented code and reference listing, the instrumentor generates a

separate file of directed graph information for each module. The same utilities as are pro-

vided with TCAT/Ada are available for using this information to draw directed graphs. The

information is also used to support the following utilities:

25-3



TCAT Series & TDGen PART I1 0

" apg. This automatic path generator gives the complete set of paths for a named mod-
ule. The user can request that only basis paths are listed; that is, those paths that have
no iteration. Additional options include presentation of a set of path statistics, speci- 0
fication of the maximum limit on the number of paths to generate, and specification
of pairs of segments not to include in paths. In complex cases, apg can be applied to
a subgraph instead of complete directed graphs.

"* pathcon. Presents the logical conditions, and associated predicates, that cause a path
in a particular module to be executed. It can be invoked for a single path, a set or range 0
of paths, or all paths.

"• pathcover. Presents the essential paths in a module, that is, those required to be exe-
cuted to achieve 100% coverage. Essential paths are determined based on the order
of segment occurrence where this order may be adjusted by sorting path information
on various criteria. Population statistics on each segment are available.

"* cyclo. Computes the cyclomatic complexity for the named module.

Since these utilities are invoked for a single module, they can require nany repetitive op-

erations on the part of the user. Consequently, two additional utilities, DoPTH and DoCYC,

allow the user to request that, respectively, apg and cyclo are applied to all appropriate 0
modules. DoPIC provides a similar facility for drawing directed graphs

The instrumented program is compiled and linked as before and, again, a number of

special run-time routines are available to provide some control over its behavior and per-

formance. When executed, the instrumented program generates a trace file for subsequent 0

coverage analysis. The basic coverage utility analyzes this trace file to report on the path

coverage achieved for a named module. For each path in the module, the coverage report

specifies whether it was executed and, if so, how many times, together with an overall cov-

erage value. A special DoRPT utility invokes the coverage analyzer for all modules sup- 0

ported by apg-generated path information.

25.1.3 TSCOPE Overview 0

TSCOPE is used with the trace files produced by TCAT/Ada, TCAT-PATH, or S-

TCAT/Ada to animate test coverage. All TSCOPE commands are treated as primitives that

are invoked to present a variety of displays. Consequently, all instrumented modules can

be reported on a single X-Window screen and different kinds of reporting can be selected 0

for different modules. (Each program module can be instrumented for either segment, path,

or call-pair coverage; since these are incompatible, only one type of information can be re-

ported from each module.) Displays are positioned on the screen using a special configura-

tion file or interactively using TSCOPE menu options. 0

25-4



PART II TCAT Series & TDGen

The following types of dynamic displays are available:

• TSc ldig. Provides dynamic display of segment or path coverage data on the directed
graph for a named module. Five different animation styles are available.

- TShisto. Provides a dynamic linear histogram of segment (or path) coverage and call-
pair coverage for a named module. This histogram reflects the percentage of times a
segment is hit. It is supported by data on the number of times a segment is hit and the
current segment coverage.

- TSlhisto. Provides a dynamic logarithmic histogram of segment (or path) coverage
and call-pair coverage for a named module. This display provides similar information
to the linear histogram display, except that it shows the differences between relative
segment hit counts more clearly.

- TSsOcg and TSslcg. Provides dynamic display of coverage data for a named module
on one of two types of call tree. TSsOcg presents a call tree that shows each distinct
link between an invoking and invoked module; it is used for showing coverage with
respect to the percentage of modules invoked. TSslcg gives only one line for each
invoking-invoked relationship, regardless of the number of connections, and is used
for display of call-pair coverage data.

• TSstrip. Provides a dynamic strip chart that shows the accumulation of segment (or
path) coverage for a named module during a single test. This chart is supported by
data on the percentage of segments (or paths) that have been hit and the number of
times the module is called.

TSCOPE also supports two static displays. These are provided by the utility available with

TCAT/Ada and TCAT-PATH for graphical display of directed graphs, and that available

with S-TCAT/Ada for graphical display of call trees. A number of additional utilities sup-

port display management.

25.1.4 TDGen Overview

TDGen generates test data, or test files, from user defined specifications. It is particu-

larly useful for generating the large amounts of test data needed in stress testing.

TDGen works with two files. The Template File tells TDGen how to generate test data

based on data supplied in a Values File. TDGen replaces variable fields, called descriptors,

in the template with values from the Values File. Descriptors may be user defined or take

one of the predefined values (ASCII, alpha, decimal, and real). In the Values File, descrip-

tors are associated with potential values. Special notations are provided for specifying rang-

es of values and handling comments, blanks, and other white space. Once the Values and

Template files have been created, the user can invoke test data generation in one of three

ways to specify how values should be taken for the descriptors in the Template File:

25-5



TCAT Series & TDGen PART II 1

"• Specifically. The values for all or some of the descriptors are specified by integers.

"* Sequentially. Values are taken sequentially from the Values File to generate every
possible combination of the given values.

"* Randomly. Selects values from the Values File randomly by taking one value from
each field in the file at random. For each field name encountered in the Template File,
a uniformly distributed random number is used to select a particular value from those
corresponding.

Additionally, the user can request TDGen to tabulate the number of possible test data

combinations that will be generated to allow a review of the size of the results before gen-

eration commences.

25.2 Observations

Ease of use. A user can interact with these tools using either a command-line interface

or a series of menus. Context-sensitive help and help frames discussing each function are

provided. No special knowledge is required to use these tools.

TCAT/Ada, S-TCAT/Ada, and TCAT-PATH all provide a number of utilities that can

be invoked for individual program units. In most cases, a special utility is available to apply

the utility for all available program units using a single command. Additionally, TCAT-

PATH supports Unix-like make files to facilitate repetitive compilation and linking tasks.

A limited amount of tailoring is provided by the use of configuration files. These allow

the user to adjust, for example, setting the maximum number of nodes to process, format-

ting options for diagraph display, and default path names.

Reports are generally well-structured. Since segments, paths, and call-pairs are referred

to by number, however, a user must refer back to the various reference listings to identify

the subject of each reference.

Documentation and user support. The tools are supported by extensive documenta-

tion that includes guidelines on appropriate minimum coverage levels.

Instrumentation overhead. TCAT/Ada, TCAT-PATH, and S-TCAT/Ada instrument

the contents of files specified as part of the tool invocation. In each case, all code is instru-

mented the same way. For TCAT/Ada, the vendor recommends a capacity of up to 2,500

segments (approximately 20,000 lines of code). The vendor estimates the size or perfor-

mance overhead for instrumentation at 20% to 30%, although this can be higher for very

complex programs. For the Ada Lexical Analyzer Generator, TCAT/Ada, TCAT-PATH, 0

25-6



PART II TCAT Series & TDGen

and S-TCAT/Ada instrumentation gave, respectively, 37%, 37%, and 28% increases in

source code size with corresponding increases of 15%, 12%, and 15% for executable code.

Versions of TCAT and S-TCAT that accomplish various levels of in-place buffering to en-

hance performance are available for C programs. Similar support is not available for the

Ada versions.

Ada restrictions. The TCAT/Ada and S-TCAT/Ada instrumentors have been validated

against the Ada validation suite, a set of programs that test compliance with the Ada stan-

dard.

TCAT/Ada and S-TCAT/Ada do not support conditional expressions in Ada; such ex-

pressions must be expanded to the explicit if-then-else form. TCAT-PATH does not handle

multiple instances of a task or exception handling. Variant records, compound conditions,

and the terminate alternative of a selective wait are not instrumented by any of these tools.

Problems encountered. Problems encountered with the runtime files and installation

instructions of earlier releases of these tools have been fixed. For each of TCAT/Ada, S-
TCAT/Ada, and TCAT-PATH, incorrectly inserted instrumentation statements prevented

compilation. In most cases, however, these errors were relatively easy to correct manually.

The TCAT-PATH pathcon utility gave a segmentation fault after processing the first record

of generated trace files, and the coverage reporting utility could not report the coverage

achieved for some program units; TSstrip was the only utility that consistently worked as

expected, though TScldig worked as long as certain command options were not given. It

was not possible to get several windows displayed on a screen. Software Research are in-

vestigating these problems. In TDGen, errors in values and template file, or in the specifi-

cation of program options, caused the program to hang.

25.3 Recent Changes

Software TestWorks has been integrated with IBM's AIX Software Development En-

vironment Workbench/6000.

25.4 Sample Outputs

Figures 25-1 through 25-26 provide sample outputs from these tools.

25-7



TCAT Series & TDGen PART II 1

-- ----------------------- 0
-- TCAT/Ada, Release 2.1 for SUN (09/16/92).
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
-SEGMQET REFEZIzCE LISTING Fri Sop 25 13:26:32 1992

procedure LLFATAL is
- To recover from syntactic error, terminate compilation

begin
M-* Iodule neow11 compile.LLIATAL *-

-- ' Segment I o --
PUT( ST!MDARDfZROR, "* Ftal )
LLPRTTOKID;
PUT( STAMDARD ERROR, " found in line 0);
PUT( STANDARD_ERROR, LLCURTOK.LINDUER, 1 );
PUTLINE( STANDARD_=ROR, -- terminating translation." );
raise PARSINGERROR;

end LLFATAL;
-W End module new 11 oopile.LLFATAL *-

begin - TESTSYNCH
- N Module new. llcompile.T ESTSYXCH '-

-* Segment I <0 ,-
while LLSTACK(LLSDNTPTR) .DATA. STNCRINDEX - 0 loop

-* Segment 2 0) 0-
- no synch info there
if LLSTACK(LLSDITPTR) .PARIDT /- 0 then

-* Segment 3 0) *-
- there really is a parent
LLSDNITPR s- LLSTAcK(LLSDNTPTR).PARZNT;

else

-- ' Segment 4 0> *- S
LLrA2ALW

end if.
end loop,

-* Segment 5 <> *--
SaDICRONIZZ;

end TIESTSNCHI
-. End module neW lloo€mpie.TE=TSXNCH -- S

begin - LLCOIefl.E
-* Module newvll compile.LLCOtZLU '--

- S segment 1 0) t-
OPEN( LLSOURCE, INjILE, "SOURCE )
LLMAINi
CLOSZ( LLSOURCE),

end LL_C0PILEZ

-- DD OF TCAT/Ada REFERENCE LISTING

Figure 25-1. TCAT/Ada Reference Listing for LLCOMPILE

25-8



PART 11 TCAT Series & TDGen

--------------------- ----------- -

- CAT/Ada, Release 2.1 for SUN (09/16/92).

-- NS=RIIENT&TION STATXSTICS

-Module S segments Cstatements cConditional statements

-nwvl~oowPile. LLW7h8 1 3

-o nev..k.opile .LLPR! 5 5 2

-nswv11..ooipile . LLR?R 3 4 1

- ev.oopieLLSIKI 1 7 0

-- new....lýppile.xLSRZ 1 8 0

- nsm11..oompila. LLSKI 1 9 0
- amr..llqoospil*.LLVAT 1 6 0

- nsv...11..cmpil*. GUTC 4 7 1

- nev..11...oepile . CVT-S 5 5 2
- uev11~campile .NAK is is 4
-nwvýllcoompile. LLNZZ 3 5 1
- m-xv1.oempile. BU=L 15 32 5
-- nwwv1...Iowpile. BUML 3 5 1

no Aelýoompil*.RUADG 11 24 5

-nev11..aocmpilG.. RhSE 5 7 2
-nsv....l~oompil* NATCH 7 6 3

- nwwvU...acPilo.ZXPAN 13 21 6
- nov_1l.Oapila. SNH19 29 9
- Me-.1.oampile. TESTS 5 5 2

- nov 11ao~qmpile .PARSE is 29 6

-nwwv..1koompII*. LLMA! 2 0
no 2ev,_compilo. LLC0 3 0

Figure 25-2. TCATIAda Irstrumentation Statistics for LICOMPILE

25-9



MCAT Series & TDGen PART 110

U~~~wk~w was - amalgaml~i~

Eie VU- &-% V00rkbouufaaD"&

41106-01 23: I

Q(gd .P.I: I W.6 1 mrabrsf *

-T IN Morwoov

r ~ ~ ~ ~ O 5kWS~~ m

- 011f vm -m Vi m Ia Pm Tota so

~~~~m~P Plum tU U b lIt *113

km nYSnM0

W*~ -MIMh 1 r ff fl IDJm

-4 UmýNLms" o-24 Au4 I~m M P U

Figure 25-3. TCATIAda Directed Graph for LLFIND from LLCOMPILE

25-10

PART II TCAT Series & TDGen

Coverage Analyzer. (Release 9.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

Selected COVER System Option Settings:
[-c) Cumulative Report - NO
I-p) Past History Report - NO
f-nj Not Hit Report - YES
I-HI Hit Report - U&S
[-nhl Newly Hit Report - NO
t-nmi Newly Kissed Report - NO
I-h] Histogram Report - YES
[-1] Log Socale Histogram - YES
I-Z] Reference Listing Cl - NO
Options read: 4

TCAT/C: Coverage Analyzer. [Release 6.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

C1 Segment Bit Report.

No. Module Names Se•ment Coverage Status:
1 All..loopile.LLCOHPU.E All Segments Hit. C1 - 100%
2 new 11_ocmpiloe.LLNkIN All Segments Hit. Cl - 100%
3 newll campile. RlDGRM All Segments Hit. C2 - 100t
4 new lloompile.BUMIDIZGHT 1 2 3 4 5 6 7 8 10

11 12 13 15
5 nevw llampile .UZLDSRLNCT All Segments Bit. Cl - 100%
6 newl ocmpil*.PARSE 1 2 3 4 10 11 12 14 15

16 19
7 hey w.Iloompile. LLFIND 1 2 3 4 5 7 a
a nsew11.ompile.LLN9UYOK= All Segments Hit. Cl - 100t
9 new 11 tokens.ADVANCE 1 2 3 4 5 6 7 6
10 new 11 tokens. SCANPATMN 1 2 3 4 5 6 7 U 9

37 38 39 40 43 45 47 49 61
62 63 64 65 66 67 66 69 70
71 74 75 76 84 IS 69 90 91
98 99 104 105 106

11 nevllocnpi1.GE!_CuARAC!M1R All Segments ait. Cl - 1009

42 11.8upbody. mTCRAR 1 10
43 i1xsup-body. UU! PAT!nNjx&!= 1 9 10 12 13 17 16 20 22

24 25 27 28 29
44 llup body. iZIT_CONCAT1RIGT 1 5
45 ll_...up.body.ZD .COW-•_CA_CA5s 1 2 3 5 7

Number of Segments Hit% 300
Total Number of Segmentst 529
C1 Coverage Value: 56.220

Figure 25-4. TCAT/Ada Segment Coverage Report using testillex

25-11

TCAT Series & TDGen PART 11

TCAT/C: Coverage Analyzer. (Release 6.2 f or SUN/UNIX 09/16/9321
(c) Copyright 1990 by Softwa~re Research, Inc.

Cl segment Not Hit Report.

NO. Nodule Na*e a Segment Coverage Status;
I nev...ll..ocmpil*.Lk.. CONPZLZ ~ All Segments Hit. Cl - 1000

2 nevll11oompils.LNZ All Segments Hit. C1 - 1006 0
3 neww 11.ocupilo. R&DOAM(all Segments Kit. Cl - loot

4 n*%w.11@ocpil*. UIULD3LIGNY 9 14

5 neNJ..lcompilo.DU!LwSZLuC2 AUl Sements Bit. Cl - 100%

6 nevý_llaocmpile. PAR=R 5 6 7 8 9 13 17

7 new _11 *cmpile. LL7IHD 6
I new ll~copile. LLN!?TOKW All Segments Bit. C1 - 100%

9 new_11_tokens.ADVANCZ 9 10 11
10 newlltokens.SCAHNpA2UZRN 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

41 42 44 46 48 50 51 52 53
54 55 56 57 58 59 60 72 73

77 76 79 60 31 82 83 85 66

67 92 93 94 95 96 97 100 101

102 103 107 108 1090

11 nev...l1.ccmpile. GNT_.CNANAC! All Segments Hit. C1 - 100%

40 1l,_sup~body. =aT._SCAN..POC
41 ll-sup-body . UEX!SCML-S.UC! 15 17

42 llsup..body. DaTCUR 3 3 4 5 6 7 8 9 11
12

43 ll~sup..boft. aT~pAT!2RNý_IATCH 2 3 4 5 6 7 11 14
15 16 19 21 23 26 30 31 32

44 ll~sup~body. DU3McGMCA!...RZ!f 2 3 4
45 llseup~body. fMIT...C0N CAhCSZS 4 6 9

Number of Segments not Bit:8 221
Total. Number of Segments: 529
Cl Coverage value 1 58.220

Figure 25-4 continued: TCAT/Ade Segment COVerage Report using testl.Iex

25-12

0 PART II TCAT Series & TDGen

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921

(a) Copyright 1990 by Software Research, Inc.
Segment Level Histogram for Module: new_11_compile.LLCONPILE

+__-__-----------4

Number of Executions, Normalized to Maximum

I (Maximum - 1 Hits) X - One Hit
S(Scale: 100.000 Each • - 0.020 Hits)

Segment Number Of I
Number Executions >-l----20------40 --- 60--- 60-S ------ 100

1 11 X ZXZZ1EMML• XXXXXXXX

Average Hits per Executed Segment- 1.0000
C1 Value for this Module: 100.0000

TCAT/Cs Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/921
(a) Copyright 1990 by Software Research, Inc.
Segment Level Histogram for Module: aewv11cmp11ie.RUILDRIGfT

I Number of Executions, Nozmalized to Maximum

I (Maximum 174 Hits) X - One Bit
i (Scale: 0,575 Each X - 3.400 Hits)

Segment Number Of I
Number Executions >-1--20-40-- -- 0- -100

1 641
2 174
3 174 I x..m ...

4 50
5 61 X1 r Z

6 46 ,

7 13 liii
0 4 X

10 79 MU IX=
11 95 xxxImx
12 144 I •• r

13 30 3
14
15 64 ac]

z- ero sits)
Average Kits per Executed Segment: 76.7692
C1 Value for this Nodules *5.6667

Figure 25-4 continued: TCAT/Ada Segment Coverage Report using testl.iex

25-13

TCAT Series & TDGen PART II 1

Coverage Analyzer. (Release 0.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

Selected COVER System Option Settings:
(-01 Cumulative Report -- YES
I-p] Past History Report -- NO
1-a) Not Bit Report -- YES
[-NJ Hit Report -YES

[-nh- Newly Hit Report -- YES
(-,m] Newly Kissed Report -- YES
(-hi Histogram Report -- NO

[-11 Log Scale Histogram - YES
(-Z] Reference Listing Cl -- NO

Options tead- 6

TCMT/Ct Coverage Analyzer. [Release 8.2 for SUN/UNU 09/16/921
(0) Copyright 1990 by Software Research, Inc.

I I Current Teat Cumulative Summary I

I 0o. Of No. Of
Nodule Number Of No. Of Segments C1% No. Of Segments Cie

u tNam: Segments: Invokes Hit Cover Invokes Hit Cover

new 11inmpile. xaCON 1 1 1 100.00 2 1 100.00

new.11.oomplla. LiMAI 1 1 1 100.00 2 1 100.00

nevl11 oampile.RZAGR 113. 1 11 100.00 2 11 100.00
nawy11€lompile.xUIM)R 15 64 13 06.67 128 13 86.67
Inew11_ompile. BUMSD 3 64 3 100.00 128 3 100.00
nev_.llaeipile.?AlSU 18 1 11 61.11 1 2 11 61.11 1

Snew..1 epile.LI~raND 6 312 6 100.00 510 a 100.00
uw..11 oompL]Le.U 3 221 3 100.00 355 3 100.00

h aew.ltokens.ADVANCZ 11 221 9 31.52 355 9 81.82
new 11 tokens.SCANPA 109 455 46 42.20 712 52 47.71
evw_11ocmpile.m.T.CZ 4 1365 4 100.00 2250 4 100.00

I ew.11.tokeaa. CMAAD 5 1 1238 3 60.00 2018 3 60.00 i
new_1l tokes. CUNRMZW 1 1 220 1 100.00 353 1 100.00 0
Iinew 11 sompile.NARN 15 220 13 86.67 353 13 86.67
nI ewlloompie.CY!TST 5 1 220 5 100.00 353 5 100.00

I new.1 ompils.EPAND 13 1 461 11 34.62 715 11 84.62
I ae..l..oampiJLe.-mC 7 1 461 5 71.43 715 5 71.43
naev.11_acampie. =A8 5 1 707 5 100.00 1 1105 5 100.00
nevlltoken&as.LOO_AH 5 54 3 60.00 I 123 3 60.00
11._atioou.LLMUaf MI 6.9 429 36 52.17 1 659 36 52.17

i 1,,sup..,body.!&IL 13 i 2 4 22.22 1 2 4 22.22 l
I .._&up_•,,dy. ==-A= 7 I 12 7 100.00 I 12 7 100.00 I

T!OtLWs 614 1 7569 384 62.54 1 11664 391 63.68 I

Figure 25-5. TCAT/Ada Segment Coverage Report using testl.lex & sample.lex

25-14

PART II TCAT Series & TDGen

(c) Copyright 1990 by Software Research, Inc.

Cl Segment Hit Report.

No. Module Name: Segment Coverage Status:
1 newjl cOmpil*e.LL_CONPILE All Segments Hit. Cl - 100%

2 new 11._oompile.LLMAZN All Segments Bit. Cl - 100%

3 new llocmpile.RE& DGRAM All Segments Hit. Cl - 100%

4 new li ocfmpile.BUILDRIGHT 1 2 3 4 5 6 7 6 10
11. 12 13 15

5 new.).1.oospile.BUILDSELECT All Segments Hit. Cl - 100%

6 newll coapile.PARSE 1 2 3 4 10 11 12 14 15

16 1s

7 new J1,ocapile.LLFIND All Segments Hit. Cl - 1009

8 neowll.oampile.LLIETTOKEN All Segments Hit. Cl - 100%

9 new ll,_tokens. ADVANcE 1 2 3 4 5 6 7 8 9

10 new .11tokens.SCAN_PATTERN 1 2 3 4 5 6 7 a 9
10 11 12 13 14 15 16 17 28
32 37 38 39 40 43 45 47 49
61 62 63 64 65 66 67 68 69
70 71 74 75 76 84 88 89 90
91 98 99 104 105 106 107

11 neW l1.ampLle.GEiTCHARACTER All Segments Bit. C1 - 100%

12 new_11_tokens. CHAR ADVANCE 1 3 5
13 newvll-tokenas. CURW_SNDOL All Segments Hit. C1 - 100%

50 il supbody.TAIL 1 5 14 16
51 lI1eupbody.DUUT_!LTCASES All Segments Hit. Cl - 100%

Number of Segments Ritt 391
Total Number of Segqents, 514

C1 Coverage Value: 63.689

TCAT/C, Coverage Analyzer. (Release 8.2 for SUN/U= 09/16/921
(c) Copyright 1990 by Software Research, Inc.

C1 Sequent Newly Bit Report.

No. Module Name: Segment Coverage Status:
7 nsll.oompwile. I.LLND 6
9 newý_l1_tokens. ADVANCE 9
10 new11 tokens. SCANPA2TTRN 10 11 12 13 14 15 16 17 20

32 107

50 11 sup.body. TAIL 1 5 14 16
51 ll_supbody. DZT_ALT_CASZS 1 2 3 4 5 6 7

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using testl.lex & sample.lex

25-15

TCAT Series & TDGen PART II 1

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.

Cl Segment Not Hit Report.

No. Nodule Name: Segment Coverage Status:
1 nevwllcmpile. LLCONPILE All Segments Hit. Cl - 100%
2 newllcompile.LLNAXN All Segments Hit. Cl - 100t
3 new.11_.ccmpile.REZADGRAN All Segments Hit. Cl - 100%
4 nevw11_compile. 9UILDRXGIT 9 14
5 ne*_ll_cmpile*.UxLDSZLZCT All Segments Hit. C1 - 100t
6 new 11 copile.PARSE 5 6 7 8 9 13 17
7 nev 11..lopile.LLFIND All.Segments Hit. Cl - 100%
a newjl_ýccmple.LLNEWOEN All Segments Hit. C1 - 100%
9 new 11 tokens. ADVANCE 10 11
10 new 11 tokens.SCANPATTERN 18 19 20 21 22 23 24 25 26

27 29 30 31 33 34 35 36 41
42 44 46 48 50 51 52 53 54
55 56 57 58 59 60 72 73 77
70 79 80 81 82 83 85 86 87
92 93 94 95 96 97 100 101 102 0
103 108 109

11 new _llcimpile.G2TCEARACTZR All Segments Bit. C1 - 100%
12 nevw_11.tokens. CHNARADVANCE 2 4
13 neow11 tokens. CUMRZNTSDWOL All Segments Bit. Cl - 100%
14 new 11.compile. MAKETOUN 10 15

48 llsup body.RBSOLVE1L.NBXGUITY 4 5 8 9 10 11 12 13 14
15 16 17 18 19

49 l.ksup body. RESTRIrCT 4 7 13 14 15 16 22
50 llsup_body.TkXL 2 3 4 6 7 8 9 10 11

12 13 15 17 18
51 1l_sup body.ZET ALAW_CAS•S All Segments Hit. Cl - 100%

Number of Segments Not Nit: 223
Total Number of Segmentsi 614 0
Cl Coverage Value: 63.60%

WC&T/Ct Coverage Analyser. (Release 8.2 for SUN/UNIX 09/16/921

(c) Copyright 1990 by Software Reearah, Inc.

Cl Segment Newly NMissed Report.

No. Nodule Name: Segment Coverage Status:
10 nesw_ll_tokens.SIN PIA52 tN 66 67. 68 69 70 71
40 llsip_body. zM3 _SCAKPROC 6

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using testl.lex & sample.lex

25-16

PART II TCAT Series & TDGen

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92)
(a) Copyright 1990 by Software Research, Inc.
Segment Level Histogram for Module: nowv11 Cmpile. LLCOMPILE

I Logarithm of Executions, Normalized to Maximum
i (Maximum - 2 Rits)

Segment Number Of I
Number Executions >---- l-10- 20----30---40-80-100

1 2

0 ~~+------------

Average Hits per Executed Segment: 2.0000
C1 Value for this Nodule: 100.0000

TCAT/C: Coverage Analyzer. IRelease 8.2 for SUN/UNI 09/16/921
(a) Copyright 1990 by Software Research, Inc.
Segment Level Histogram for Module: new ll compile.READGRAM

I Logarithm of Executions, Normalized to Maximum
S(Maximum - 1240 Ritz)

Segment Nutber Of I
Number Executions) 1- 10- 20- 30--40--60-100

12 IXXXmz
2 64 TTT•XTTTUTTTTTTxxxx
3 1280
4 64 .
5 12 IX JIflEEZI
6 521

7 2I J
s 128 .
9 2 Iz-

10 52
11 2 I:XX

Average Hits per Executed Segments 150.9091
C1 Value for this Module: 100.0000

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using testi.lex & sample.lex

25-17

0

TCAT Series & TDGen PART II 1

-- TCAT-PATR/Ada, Release 2.1 for SUN (09/18/92).

-- (0) Copyright 1989 by Software Research, Inc. AL. RIGHTS RESERVED.

-- SEGMENT REFERENCE LISTING Mon Oct 26 13:09:12 1992

procedure LLNEXTTOKEN;
-- get the next token from the input stream (defined below)

function LLFIND(ITEM: LLSTRINGSi WHICH! LLSTYLE) return INTEGER is
-- Find item in symbol table - return index or 0 if not found.
- Assumes symbol table is sorted in ascending order.
LOW, MIDPOINT, HIGH- INTEGER;

begin
-- ' Module newlII ccmpile.LLFIND *- 0
-- ' DIGRAPH NODE 1 '-

-- , Segment 1 0 *-

LOW : 1;
HIGH :- LLTABLESIER + 2;

-* DIGRAPH NODE 2 5-

while LOW /- HIGH loop
--- Segment 2 0 *-

MIDPOINT - (HIGH + LOW) / 2;
-* DIGRAPH .ODE 3 -

if ITEM (LLSTMBOLTABLE(MIDPOINT) .KEY then
-s Segment 3 0 *-

HIGH :- MIDPOINT;
elsif ITM - LL81I0OLTABLE(MIDPOzNT). KEY then

-* Segment 4 0 *-
-- ' DIGRAPH NODE 4 - 0

if LLS'!BOLTABLE(MIDPOINT) .KIND - WHICH then
Segment 5 0 -

return(MIDPOINT);
else

-- ' Segment 6 0 *-
return(0);

end if•
else - ITEM ý LLSYMBOLTAWLE(MIDPOINT).KEY

- S segment 7 0 *-
LOW MIDPOINT + 1;

end if;
end loop;

S-. egment 8 < > *-

return(0); - item is not in table
end LLFIND;

-. DIGRAPH NODE 5 e-
-* End module nowflo-compile.LLFIND *-

E- ND OF TCAT-PATH/Ada REFERENCE LISTING

Figure 25-6. TCAT-PATH Segment and Node Reference Listing for LLCOMPILE

25-18

PART 11 TMAT Series & TIDGen

-- TCAT-PATH/Ada, Release 2.1 for SUN (09/18/92).

-- INSTRUMENTATION STATISTICS

M- odule, 0 segments # statements # Conditional statements

-- now 11compile.LLFIN 8 11 3
-- new lloompil&.LLPRT 5 5 2
-new_11_oompile.LLPRT 3 4 1
-new -11ompile.LLSKI 1 7 0
-now -11compile. LLSKI 1 a 0
-now -11-compile.LLSKI 1 9 0
-- DU_11_poOpil*.LLrAT 1 6 0
-- new_11_oompile.GET-C 4 7 1

nevll -compile. CVT-S 5 5 2
-- new 13. CoMPile.14A1Z 15 is 4
-- now -11 -compile.LLNEX 3 5 1
-new_ llooinpile.BUILD 15 32 5
-- now 11compile.BUILD 3 5 1
-- new_11_compile.READG 11 24 5
-- new 1 -compil*.flASE 5 7 2

-- nev11ComPil*.NATCE 7 6 3
-- nwjloompile.UXPAN 13 21 6
-new_11_coapiLla. SYNCH 19 29 9
-new_11_cospile.TESTS S 5 2
- nw_11_oopile. PARSE 18 29 6
-new_11_aospile. LXtAI 1 2 0
-nw~ll~oompile. LL-CO 1 3 0

Figure 25-7. TCAT-PATH Instrumentation Statistics for LLFIND

cyclo [Release 3.3 -9/26/90]

Cyclowatic Ntmbar E dges -Nodes +2 - e- 5 +2 - 5

Figure 25-8. TCAT-PATH Cyciomatic Complexity of Function LLFIND

25-19

TCAT Series & TDGen PART 11

now 11_compile. LLF1ND a
new li-.compile. LLRTSTRING 5
nev_1.1-compile.LLUSTOKEN 3
new 11_cowpile. LLSK!PTOKEN 1
nev-i1compia. .LLSKXPNODE 1

new.1_oozcpi1*.LLSKIPBOTH I
new_llcompie.LLPATAL 1
newU pompile. GE7TCHARACTER 4
nevj_11lcompile. CVTSTRING 5
7new1_lloopie. HAZE...TOKE 15
Dev..llcozpi1 . LLNEXTTOKDN 3
new_11 compile. BUILDRIGHT 15
n~v_~1,_cmpi1e .BDUIWSELECT 3
now...l.coppil*A.V.ADGRIIN 11
nev..1j.~cmpile . ERUSE 5
newj_1l-compile. MATCH 7
newU -compile. EPAND 13
nov11 compile. SYNCHfRONIZZ 19
inew_11..ooMpile. TESTSYNCH 5
new_11 om~pile. PARSE 18
new_.1loaopile .LLMA1N 1
newý_11_compile .LLCOI4PLE 1

Figure 25-9. TCAT-PATH Segment Count for Each Module In LLCOMPILE

digpic [Release 3.1 for SUN 336 3/3/891

HI 11 0-1
H(11 1

> >[[2 11(0 0 - 28
I it 11 1 1

0 0 13)J0 - 7 -3 4

((4 II(0 I0 - 5 60

115 11 I I

Figure 25-10. TCAT-PATH Digraph of Function ILFIND

25-20

PART II TCAT Series & T"DGen

apg [version 3.3 -- 09/02/92] - paths for 'new_hlompile.LLFIND"

1245
1246
1 2 3 4[2 3 5)) 8

1 2 3 (1 2 3 7 U 4 5
2 2 3 If 2 3 7 3] 4 6
1 2 7 <(2 3 7 a) S
1 2 7 ((2 3 7] 4 5
1 2 7 i(2 3 7 1 4 6
18

Total of 9 paths for 'neww Ilccnpil*.LLFIND',

Figure 25-11. TCAT-PATH All Paths for LLFIND

apg (version 3.3 -- 09/02/921 - paths for "new 11_oompile.LLFINDf

1245
1246

~10

Total of 3 paths for 'newllIcompile. LLFZND'.

Figure 25-12. TCAT.PATH Basis Paths for LLFIND

apg [version 3.3 - 09/02/92] - paths for "nvwll compile.LLFIND=

Path Analysis Statistics
File name, new 11 compile. LLFIND. dig

1umber of nodes4 5

Cyolomtio numbe (E.- N+ 2).

Tumbe of paths: 9

Average path length (segments) a 5.33
Miniuum length path (segAents), 2 (Path 9)
Maixlaum length path (segments): 7 (Path 6)
Mast iteration groups: 1 (Path 8)

Path count by iteration groups:
0 iteration group(s), 3
1 iteration grou(-p(s) : 6

Stopped at 1 iteration groups

Figure 25-13. TCAT-PATH Path Statistics for LLFIND

25-21

TCAT Series & TDGen PART II 1

pathcover -- Path Coverage Utility. [Release 1.2 -- 9/911 0
(c) Copyright 1991 by Software Research, Inc.

pathoover: FIRST INSTANCE FOUND BY SEGMENT
Module:: "newll_coupile.LLFIND* Option:;: '-f

Path# Path
- --- ---- --- -------------------- --------- -

1 1 121
2 2 232
3 3 344
4 4 455
5 5 456
6 7 327
7 8 258
d 0
OR

pathoover: POPULATION STATISTICS BY SEGMENT
Module.-: "newll ccmpile.LLFIND' Option:: S -c'

"-Segment # of paths

1 3
2 2
4 2
5 1
6 1
8 1

pathoover: FIRST INSTANCE FOUND BY SEGMENT
Module:: .new llCompile.LLFIND' Option:: '-f'

Path# Path

1 1 1245
2 2 1246
3 3 I 8

patheover: LAST INSTANCE FOUND BY SNEDMET
Module:-: 'newllcmpile.LLFIND' Option:: :-I'

Path# Path

1 1 1245
2 2 1246
3 3 18

Figure 25-14. TCAT-PATH Path and Segment Information for LLFIND

25-22

PART II TCAT Series & TDGen

Ct Test Coverage Analyser Version 2.1 (9/91)
(a) Copyright 1991 by Software Research, Inc.

Module *newllcompile.BUILDRIGHT*: 26 paths, 9 were hit in 64 invocations.
30.770 Ct coverage

HIT/NOT-HIT REPORT

P# Hits Path text

1 25 1 2 3 4 10 12 ((2 3 4 10 12 13 11 5 6 7 8 9 14)) 15
2 None 1 2 3 4 10 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14)> 15

3 None 1 2 3 4 11 12 <(2 3 4 10 12 13 11 5 6 7 B 9 14 3) 15
4 1 1 2 3 4 11 13 ((2 3 4 10 12 13 11 5 6 7 8 9 14)> 15
5 None 1 2 3 5 10 12 <1 2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
6 None 1 2 3 5 10 13 ([2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
7 5 1 2 3 5 11 12 ((2 3 4 10 12 13 11 5 6 7 8 9 14)) 15
8 None 1 2 3 5 11 13 (1 2 3 4 10 12 13 11 5 6 7 8 9 14]) 15
9 11 1 2 3 6 10 12 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
10 None 1 2 3 6 10 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
11 None 1 2 3 6 11 12 (C 2 3 4 10 12 13 11 5 6 7 8 9 14)) 15
12 4 1 2 3 6 11 13 ((2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
13 8 1 2 3 7 10 12 ([2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
14 None 1 2 3 7 10 13 <[2 3 4 10 12 13 11 5 6 7 8 9 14))15
15 None 1 2 3 7 11 12 ((2 3 4 10 12 13 11 5 6 7 9 9 14)) 15
16 1 1 2 3 7 11 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15

17 None 1 2 3 8 10 12 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
18 None 1 2 3 8 10 13 ((2 3 4 10 12 13 11 5 6 7 9 9 14]) 15
19 None 1 2 3 8 11 12 <[2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
20 None 1 2 3 B 11 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
21 None 1 2 3 9 10 12 (1 2 3 4 10 12 13 11 5 6 7 9 9 14 3) 15

22 None 1 2 3 9 10 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
23 None 1 2 3 9 11 12 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
24 None 1 2 3 9 11 13 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3> 15
25 None 1 2 14 <(2 3 4 10 12 13 11 5 6 7 8 9 14 3) 15
26 9 1 15

Figure 25-15. TCAT-PATH Coverage Report for BUILDRIGHT using testl.lex

25-23

TMAT Series & TIDGen PART 11

Ett &t. bom Ipr bm kmou law ~ 11I flei &W hh - Ba j"
CdIft.w
ca"WON r

"rim
I.!J

US4%" ri - *..

r - -a F-a

w Ge%* M ft r- -t%. - 0.1101IP

.$ta o. I

J- k.of

it

=OVO 1"
I "

_ _ _ _ _ _ _ _ _ _ _ _ _111111141_ _ _ _ __M_ _ J*
waft-

Fiur 2-1. -TATAd al Gap fr L-OKN

252

0 PART II TCAT Series & TDGen

Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921
* (c) Copyright 1990 by Software Research, Inc.

Selected SCOVER System Option Settings:
[-c] Cumulative Report -- NO
I-p3 Past History Report - NO
[-n] Not Hit Report - YES
[-HN Hit Report - YES
[-nh] Newly Hit Report - NO
[-na) Newly Missed Report -- NO
[-hi Histogram Report - NO
(-I] Log Scale Histogram - NO
C-21 Reference Listing S1 -- NO
Options read: 2

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.

S1 Call-pair Hit Report.

No. Module Name: Call-pair Coverage Status:
1 new ll€conpile.LL COMPILE All Call-pairs Hit. S1 - 100%
2 new11 compile.LLMAIN All Call-pairs Hit. Si - 1004
3 newllcmompile.READGRAM All Call-pairs Hit. S1 - 100%
4 newj IIompile.BUILDRIGHT All Call-pairs Hit. S1 - 100%
5 new llaccepile.BUZLDSELECT All Call-pairs Hit. S1 - 100%
6 newllompile.PARSE 1 2 3 4 8 9 10
7 newjilc0apile.LLFIND All Call-pairs Hit. S1 - 100%
8 nevwllccmpile.LLNEXTTOKmN All Call-pairs Hit. S1 - 100%
9 newy lltokens.ADVANCE 1 2 3 4
10 new 11 tokens.SCAN PATTERN 7 8 9 11 17 18 19

22 23 24 28 31 32 33
38 41 42 43

11 new_1_oPpile.GETCHARACTER All Call-pairs Hit. S1 - 100%
12 new -tokens.CKAR ADVANCE All Call-pairs Hit. S1 - 100%
13 new. .itokens.CURRmISYNBOL All Call-pairs Hit. S1 - 100%
14 new-llompile.MAKE TOKEN 1 2 3 4 5 6

40 ll-sup_body. fITSCANPROC All Call-pairs Hit. S - 100l
41 llsup_body. EMITSELECT 1 2 3
42 llsupbody.UITCHAR All Call-pairs Hit. S1 - 100%
43 llsupbody. 4ITyPATTERNMATCH 5 6 7 8 9 15 16

22 23 24 25
44 llsup_body. DIT CONCATRIGHT 2
45 llaup_body. DUTCONCATCASES 1 2 4 8 9

Number of Call-pairs Hit: 88
Total Number of Call-pairs: 162
S1 Coverage Value: 54.32%

Figure 25-17. S-TCAT/Ada Call-Pair Coverage using testl.iex

25-25

TCAT Series & TDGen PART II

S-TCAT/C: Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

S1 Not Hit Report.

No. Module Name: Call-pair Coverage Status:
1 newlloopile.LL_COMPILE All Call-pairs Hit. S1 - 100%
2 neow iIoompile.LLMAIN All Call-pairs Hit. Si - 100l
3 new 11 compile.READGRAM All Call-pairs Hit. S1 - 100%
4 newllcospile.BUILDRIGHT All Call-pairs Hit. Si - 100%
5 new_I1_compile.BUILDSELECT All Call-pairs Hit. Si - 100%
6 new-llc ompile. PARSE 5 6 7 11
7 new ll capile.LLFIND All Call-pairs Hit. S1 - 100%
8 new_l1_copile.LLNEXTTOKEN All Call-pairs Hit. S1 - 100%
9 new 11 tokens. ADVANCE 5 6
10 new 11 tokens.SCANPATTERN 1 2 3 4 5 6 10

14 15 16 25 26 27 29
36 39 40 44

11 newll_oompile.GETCHARACTER All Call-pairs Hit. S1 - 100%
12 now 11 tokens.CHAR ADVANCE All Call-pairs Hit. S1 - 100%
13 new_11_tokens.CURiNTSYMBOL All Call-pairs Hit. S1 - 100%
14 newiicompile.MAKETOKEN 7

40 ll1supbody.EMIT SCANPROC All Call-pairs Hit. SI - 100%
41 llaupbody. NITSELECT 4
42 Illsupbody.EKIT CHAR All Call-pairs Hit. S1 - 100%
43 llsupbody. EIT-PATTERN-MATCH 1 2 3 4 10 11 12

17 18 20
44 l2 supbody. ENIT_CONCATRIGHT 1
45 ll sup_body. MITCONCATCASES 3 5 6 7

Number of Call-pairs Not Hit: 74
Total Number of Call-pairs: 162
S1 Coverage Value: 54.32%

0

Figure 24-17 continued: S-TCAT/Ada Call-Pair Coverage Using testl.lex

25-26

l l I I '0

0 PART II TCAT Series & TDGen

0
Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Researoh, Inc.

Selected SCOVER System Option Settings:
[-a) Cumulative Report -- NO
(-p) Past History Report - NO
[-na Not Hit Report - YES
[-R] Hit Report Y- ES
[-nh] Newly Hit Report - NO
[-n)] Newly Missed Report - NO
[-h] Histogram Report - NO
(-11 Log Scale Histogram -- NO
[-Z] Reference Listing SI - NO
Options read: 2

S-TCAT/C: Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/921
(a) Copyright 1990 by Software Research, Inc.

S1 Call-pair Hit Report.

No. Module Name- Call-pair Coverage Status:
I nowllc cpile.LLFIND All Call-pairs Hit. Sl - 100%
2 new7 llaompile.LLPRTSTRING All Call-pairs Hit. S1 - 100%
3 now 1l_wpile. LLPRTTOKZN
4 newI1_copile.LLSKIPTOKDI
5 new ll compile. LLSKIPNODE
.6 nyw_11_compile.LLSKIPBOTH

7 new 1ii pompile.LLFATAL
8 nevwll. ompile.GMT CHARACTER All Call-pairs Hit. Si - 1000
9 newll•ompile.CVTSTRING All Call-pairs Bit. S1 - 1000
10 nevwll_0=opile.MAKETOKDI 1 2 3 4 5 6
11 evwl•cmpil&e.LLNE=TOKUN All Call-pairs Hit. S1 - 100k
12 new _I_compile.BUILDRIGHT All Call-pairs Hit. Si - 1001

50 lisup body. DMTPATTERNLMATCH 5 6 7 8 9 15 16 19
22 23 24 25

51 11,_supbody. DITCOUt All Call-pairs Hit. S1 - 100%
52 II _sup body. KIQT.SELECT 1 2 3
53 llsaup_body. DETT SCANPROC All Call-pairs Hit. S1 - 100%

* 54 illsup body.DEIT2TOKDI All Call-pairs Hit. S1 - 100%
55 11_sup body. NCLUDEATTZRM 1 3 4
56 11sup body.LOOK_AHJMD All Call-pairs Hit. S$ - 100%
57 llsupbody.LOOK..UPyATTZRN All Call-pairs Bit. Sl - 100%
58 11suphbody. OPTION All Call-pairs Hit. S1 - 100%
59 llsupbody. RRPEAT All Call-pairs Bit. S1 - 100%
60 11 supbody. STOR3_PATTERN

0 61 llaations. LLTAUEACTION All Call-pairs Hit. S1 - 100%

Number of Call-pairs Hit: 88
Total Number of Call-pairs: 253
51 Coverage Value: 34.7S0

Figure 25-18. S-TCAT/Ada Call-Pair Coverage using testl.lex Accounting for All Call-Pairs

25-27

TCAT Series & TDGen PART 11

S-TCT/Ci Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

Si Not Bit Report.

No. Module Name: Call-pair Coverage Status.
1 nWWll.~oapile . LL'ND All Call-pairs Sit, 51S - loot
2 naevj11lompile.LLPRTSTRING All Call-pairs Hit. Si - l00t
3 now 1 cmpile .LLPRTTOKEN 1
4 neV..l...oopile .LLSKIPTOKZN 1 2
5 newv_.lOcmpile. LLSKIPNODE 1 2
6 nevý_l.qompile .LLSKIPIOTN 1 2 3
7 now l11.Oompile. LLFATAL 1
9 nW~~ 11coMpile. GET _CRARACTER All'Call-pairs sit. S1 - 1000
9 Dnw1_~ompile .CVTSTRING All Call-pairs Bit. 81 - 1000
10 now ll~coapile .NAKEETOKDI 7
11 hewj:l.Omple. L.NETTOKUN All Call-pairs Nit. Si - loot
12 a~ew 11 compile. IUILDRIGHT All Call-pairs Bit. S1 - 1000
13 neww11 compile. IUILDSELECT All Call-pairs sit. Si - 100%
14 nsw~l1_cmpil*.RNADGRAM All Call-pairs flit. Si - 100%

46 llsuP~body. flU!_CONCAT..CASES 3 5 6 7
49 ll1..uup~body. flU! CONCh!' RIGNT 1
50 2lsup~body.DUKT _PATTERN. MATCH 1 2 3 4 10 11 12 13 14

17 16 20
Si llAupbody. ZUTCHRM All Call-pairs Nit. Si - 100%
52 lk..sup_..bdy .flU! SELT 4
53 ll...map~body. EDUTSCANPROC All Call-pairs Nit. Si - 1004
54 ll~sup~body.DUXT TOKZN All Call-pairs Nit. Si - 100t
55 11l-sup~body. XNCLuWEPAT~zRN 2
56 llsnap~body.LOOX-MzAD All Call-pairs Nit. Si - 1000
S7 ill~up.body.LOOý_UP_.pATTERN All Call-pairs Nit. 51 - 100%
56 ll...aup~body.OPTION All Call-pairs Sit. Si - 100%
59 11..sup...body.UENEaT All Call-pair. Bit. Sl - loot
60 llsup..body. STOKEPATTERN 1
61 li-actions .LLTAIZhCTION All Call-pairs Nit. 81 - 1o0t

Number of Call-pairs Not Hit 165
Total Number of Call-pairs: 253
S1 Coverage Value: 34.78%

Figure 25&18 continued: S-TCAT/Ada Call-Pair Coverage using testl.lex Accounting for All
Call-Palirs

25-28

PART II TCAT Series & TDGen

Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/921

(a) Copyright 1990 by Software Research, Inc.

Selected SCOVER System Option Settings:
[-c) Cumulative Report -- YES
I-p] Past History Report -- NO
[-a] Not Hit Report -- YES

[-H] Hit Report - YES

[-nh] Newly Hit Report -- YES
[-nam] Newly Missed Report - YES
1-h] Histogram Report - NO
1-11 Log Scale Histogram - YES
j-Z] Reference Listing Sl -- NO
Options read: 6

S-TCAT/C: Coverage Analyser. [Release 8.2 for SUN/UNIX 09/16/921
(c) Copyright 1990 by Software Research, Inc.

------ --------------------4--------------+--------------+

I Current Test I Cumulative Summary I
- - + ---------- ----------------

I NO. Of I No. Of
Module Number Of I No. Of Call-pairs Sl% No. Of Call-pairs S1t

Names Call-pairs: I Invokes Hit Cover Invokes Hit Cover
4-- ~~~~~--- ------- - ---- ----- ---- -- _

nevll2,_compi1e.LL.COM 1 1 1 100.00 2 1 100.00

newlcompile.LLWAIN 2 1 2 100.00 2 2 100.00
new-lloompile.READGR 2 1 2 100.00 2 2 100.00
new..lloomnpile.BUILDR 0 64 0 100.00 128 0 100.00

Repw llncompile.BUILDS 0 64 0 100.00 128 0 100.00
newm.ll.oompile.PARSE 11 1 7 63.64 2 7 63.64
new_.llocmpile.LLFrND 0 312 0 100.00 510 0 100.00
new.ll..compile.LLNEXT 0 221 0 100.00 355 0 100.00
new lltokens.ADVANCE 6 221 5 83.33 355 5 83.33
new _ll.tokens.SCAN_PA 44 455 22 50.00 712 25 56.82
new lloompile.GETCH 0 1385 0 100.00 2250 0 100.00

ne*%._lk.tokens.CHAR.AD 0 1238 0 100.00 2018 0 100.00
new-11.tokens.CURJUNT 0 220 0 100.00 353 0 100.00
new_1l._.opile.MAKET 7 220 7 100.00 353 7 100.00
new ll_.ompile.CVTST 0 220 0 100.00 353 0 100.00

new._lloompile.XXPhND 3 461 1 33.33 715 1 33.33
new llcompile.MATCH 0 461 0 100.00 715 0 100.00
newlloompile.ERASE 0 707 0 100.00 1105 0 100.00
1 newllItokens.LOOKAN 0 84 0 100.00 123 0 100.00
1l.aotions.LLTAKEACTI .0 429 0 100.00 659 0 100.00

I ll•sup_body.TAIL 18 I 2 0 0.00 I 2 0 0.00 I
I llsup._body.DMILT..._ 8 I 12 8 100.00 I 12 8 100.00 I

4----- -- ------------- +-------- -- ------- +

I Totals 238 I 7569 132 55.46 (11884 136 57.14 I

Figure 25-19. S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.iex

25-29

TCAT Series & TDGen PART II

S-TCAT/C: Coverage Analyzer. [Release 0.2 for SUN/UNIX 09/16/92]

(c) Copyright 1990 by Software Research, Inc.

Si Call-pair Hit Report.

No. Module Name: Call-pair Coverage Status:
1 now llcompile.LL.CONPILE All Call-pairs Hi'. S1 - 100%

2 newvill:c pile.LULKIN All Call-pairs Hit. S1 - 100%

3 newllcomipilm.READGRAM All Call-pairs Hit. S1 - 100%

4 newll_compile.9UILDRIGHT All Call-pairs Hit. S1 - 100%
5 new llopompilo.BUILDSELZCT All Call-pairs Hit. S1 - 100%

6 newlloopil*.PAR5E 1 2 3 4 a 9 10

7 new l_,cmpila.LLFIND All. Call-pairs Hit. S1 - 100%

8 newllcopil*.LLNEZTTOKEN All Call-pairs Hit. S1 - 100%
9 neowlltokene. ADVANCE 1 2 3 4 5 0
10 new11 tokens.SCANPATTERN 1 2 3 7 8 9 11 17 18

19 20 21 22 23 24 28 31 3
33 34 37 38 41 42 43

11 now llcopile.GET CHARACTER All Call-pairs Hit. Si - 100%

48 ll_supbody.RESOLVZAMBIGUITY 1 2 9 10 11 12 13 27 28
29 34 35 36 S

49 llsupbody.RESTRICT 1 2 3 4 5 6 7

50 llsup body.TAIL
51 11_supbody.hITALT CASES All Call-pairs Hit. S - 100%

Number of Call-pairs Hits 136
Total Number of Call-pairs: 238
S1 Coverage Value: 57.14%

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921
(o) Copyright 1990 by Software Research, Inc.

Si Call-pair Newly Hit Report.

No. Module Names Call-pair Coverage Status:
9 new 11 tokens. ADVANCE 5
10 new ll tokens. SCANPATTZRN 1 2 3

48 li sup body.RESOLVE_AMBIGUITY 1 2 9 10 11 12 13 27 28
29 34 35 36 0

49 11 sup body.URSTRICT 1 2 3 4 5 6 7
51 llsupbody.nffT!.ALTCASES 1 2 3 4 5 6 7 8

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.lex

25-30

PART 11 TCAT Series & TDGen

S-TCAT/C: coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/921

(c) Copyright 1990 by Software Research, Inc.

Si Not Hit Report.

No. Module Name: Call-pair Coverage Status:

I nlw11compile.LL..COJ4PILE All Call-pairs Hit. Si - 100%

2 new ll11compile.LLMAIN All Call-pairs Hit. Sl - 100%

3 newvll.compile. READGRAM All Call-pairs Hit. Si - 100%

4 new l1...compile.BUILDRIGHT All Call-pairs Hit. Si - 100%

5 new 11 compile.BUILDSELECT All Call-pairs Hit. Sl - 100%

6 new ll-couipile.PARSE 5 6 7 11

7 new ll~.compile.LLFIND All Call-pairs Hit. Si 100%

8 new711..compile.LLNEXTTOKEN All Call-pairs Hit. Si - 100%

9 new....l1.tokens.ADVANCE 6

10 new_11_ýtokens.SCAN...PATTERN 4 5 6 10 12 13 14 15 16
25 26 27 29 30 35 36 39 4
44

ii new-ll~coupile.GET~qfARACTER All Call-pairs Hit. S1 - 100%

40 ll-supbody.EMIT...SCAR..PROC All Call-pairs Hit. Sl - 100%

41 11~sup~body. E1IT..SZLECT 4

42 lljsup-body. MIT-..CHAR All Call-pairs Hit. Sl - loot

43 ll~sup_...ody.R2MIT..PATTERN MATCH 2 11 12 13 14 17 18

44 ll~sup~body.D(ITCONCAT_7.1RGHT All Call-pai-rs Hit. Sl - .100%

45 11 -sup~body. ~rTCONCATCASES 3 5

46 lls9up~body.CVT_STRING All Call-pairs Hit. 51 - 100%

47 ll~supbody.CVT..ASCXX All call-pairs sit. 51 - loot

48 ii-sup..body.UESOLVE_AMBIGUITY 3 4 5 6 7 8 14 15 16

17 18 19 20 21 22 23 24 2

26 30 31 32 33

49 11~sup..body. RESTRICT 8 9 10 11 12 13

50 11lsup...body.TAIL 1 2 3 4 5 6 7 8 9

51 l~gupfioy.ZIT10 11 12 13 14 15 16 17 1

51 lsp...od.DIT..ALTCASES All Call-pairs Hit. 51 - 100%

Number of Call-pairs Not Hit: 102

Total Number of Call-pairst 238

Si Coverage Valuel 57.14%

S-TCAT/C. Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/921

(c) Copyright 1990 by Software Research, Inc.

Si Call-pair Newly Missed Report.

No. Module Name: Call-pair coverage Status:

10 now....ltokons.SCAM...PATTERN 19 20 21

40 ll~sup...body.MDITSCAkLPROC 3

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using testlilex & sample.Iex

25-31

TCAT Series & TDGen PART II 1

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: new ll_compile.LLCOMPILE

+ - -----------------------------------. 9
I Logarithm of Executions, Normalized to Maximum
I (Maximum - 2 Hits)

Call-pair Number Of I
Number Executions > ----------- 1--------- 10-- 20 ---- 30---40--80-100 0

--- ---- - -------------. --- ------- -- ---- - ------------ +

+------------+---------------------- ------------- +
Average Hits per Executed Call-pair: 2.0000
S1 Value for this Module: 100.0000

S-TCAT/C: Coverage Analyzer. (Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: nIw00.c00pilo.BUILDSELECT

No call-pairs present or hit

S-TCAT/C: Coverage Analyzer. [Release 0.2 for SUN/UNIX 09/16/92)
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: newvllcompile.PARSE

Logarithm of Executions, Normalized to Maximum 0
(Maximum- 1105 Hits)

Call-pair Number Of I
Number Executions >------1--- 10- 20-30-40-- 80-200

--- --------- +-- - ------ ----- _+

1 2 XXXXXXX
2 2 Ixxi XX
3 2 XXXXXXX
4 353 XXXXXXXXX XX.UXXXIXIZXXIXXXXX
5 *

6 I
7 ,

8 715 ,

9 659 YYYYX.Ym vYXTYV T XY?
10 1105 1

11

- Zero Hits)

Average Hits per Executed Call-pair: 405.4286
S1 Value for this Module: 63.6364

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.iex

25-32

PART II TCAT Series & TDGen

oenf1 cd lovsiitscoee hitm ~Iis
!Tilm T 3t€1dig 1.2) L m t.We ew-L1mm pi1ei.LLFINOdijW

2

73

3

4

Edge.: w
HadLe: S
Cucmtl€c Nwin•baf 5

Copwight 1990 Sfbir.V 2Reseeth. Inc.

Figure 25-20. TSCOPE Dynamic Display of Coverage on Directed Graph for LLFIND

t'rl ~shellteel -Mmjesh•l

Q 4
Q2

Q2
4

2 L Tjme (lWip 1.2)
4 ~~~NoStlg: fleq.LL-OII@ t . LLIrIUH

Q2 tOO

4
2

4a CI
4
2
4

mai .ce.o1. VJY U eINC • 3d9C t17.

I4
Q2

too 1.elein !o. LLFINi0 6J3;

Figure 25-21. TSCOPE Dynamic Display of Coverage Accumulation for LLFIND

25-33

TCAT Series & TDGen PART II 1

(Oc values file I: for variable number of initial TDGen executions. 3

expr [t expr)(t op)(t expri It identifier) It real-no)
op +-/ *
identifier variablel variable2 it alpha 6)
real-no It real 4.6] (t integl)n+4(integ2) (0 integl]E-f% integ2)
integl [tr 1..100)
integ2 (tr 3..6)

(re Values file 2: for last two executions of TDGen.

expr variablel variable2 [% alpha 6) It real 4.6) (t integl)E+[% ii
op +-/-
identifier variablel variable2 it alpha 6)
real_no [t real 4.6) it integl)I+{% integ2] It integl)E-(t integ2]
integl (%r 1..1001
integ2 (tr 3. .61

(to Template file: Produces arithmetic expression of varying I
(tc complexity for use in testing a generated lexical analyzer. 3

(C expr 3

Figure 25-22. TDGen Sample Value and Template Files

No. Table Cumulative Total
Field Entries Combinations

a expr 3 3
top 4 12
% identifier 3 36
r real-no 3 108

C integl 100 10800
i tnteg2 4 43200

Figure 25-23. TDGen Table of Sequential Combinations for Initial Files

25-34

PART II TCAT Series & TDGen

Et realno)
(t expr)[t op)(t expri
(t identifier)
(% expr[% op)[% expr)
(% identifier)
[t identifier)
It expr[% op)[% expr)
(t real no)
(I realno)
(% identifier)

Figure 25-24. TDGen Output of First Random Execution

3E+6
It real 4.6)-variablel
RSBEz4
(% integl)E-[% integ2j-[% integliE-[% integ2)
variable2
variable2
f% identifier)*(% real no)/[% identifier)/[% identifier)
21E+4
47E-6
variablel

Figure 25-25. TDGen Output After 3 Executions with 1st Value File

3E+6
3092. 703258-variablel
RSBEz4
53E-4-83--6
variable2
variable2
G36dk5 *26E-5/olma.D/variable2
21E+4
47E-6
variablel

Figure 25-26. TDGen Output After 2 Executions with 2nd Value File

25-35

PART II TST

26. TST

The Ada Test Support Tool (TST) is government owned. Designed to facilitate the test-

ing of Ada subprograms and task entry points, it provides test driver generation with test

data generation for program unit parameters. TST operates in batch or interactive mode.

26.1 Tool Overview

TST was developed by Intermetrics, Inc. under contract to the Software Technology for

Adaptable, Reliable Systems (STARS) Foundations program. It leverages off technology

developed for the Ada Test and Analysis Tools (ATEST) Intermetrics previously built for

the Worldwide Military Command and Control (WWMCCS) Information System (WIS)
program. The first version of this toolset became available in 1989. It is compiler indepen-

dent and designed to be portable. Intermetrics has hosted TST on the Alsys PC/AT, Alsys
Sun, and DEC Ada compilers. It is available at no charge from the STARS Foundation Ar-

chive.

The evaluation was performed on TST version 2 running in a VAX/VMS environment.

TST consists of three parts: a Shell, Source Instrumentor, and Testing Subsystem. When

used interactively, the Shell provides a test environment where the user can set various de-
fault parameters, such as the name of a separate directory to hold all the files generated dur-

ing instrumentation. It allows the user to invoke the Source Instrumentor and handle the

compilation, linking, and execution of the instrumented code. The Shell also provides for

the management of internal TST files, and screen and terminal handling.

Testing starts by invoking the Source Instrumentor to insert statements that allow call-

ing contained subprograms and task entry points into a library unit under test. The instru-
mentation caters for reading and writing of parameter values, assertion testing, and logging

of test results and program execution information. Both the specification and body of the

unit(s) under test are submitted to the Source Instrumentor. (Although statements are not

inserted in package specifications, the instrumentor does extract some information from

them.) Units containing type declarations that are used by the unit under test are also need-

ed. The user is required to submit additional information for testing generic items. For ex-

ample, instrumentation of a generic package requires the user to provide actual type and
subprogram names, whereas a generic formal type or subprogram requires a package name

and then the name of the actual type or subprogram. In the case of generic declarations, the

26-1

TST PART II 1

user must provide type and subprogram names for generic parameters. One instantiation of

each generic unit is generated using specified names.

Statements for automatic test data generation for predefined parameter types are auto-

matically included in the source code. The user is queried whether test data generation for

user-defined types should be included. Test data generation is performed in two ways. In

one case, TST generates all possible values for a parameter (or the first and last values for

floating point types). In the other, the user specifies that all possible values are divided into 0

a given number of partitions, and TST then selects the first, middle, and last value from

each partition. The user is responsible for ensuring that the number of values generated is

not sufficient to cause the Ada exception StorageError to be raised. This automatic test

data generation is not available for task, private, or limited private types. When requesting

generation for unconstrained types, such as an unconstrained array, record, or string, the

user must give a constraint. Optionally, constraints may also be given for character types.

Finally, the Source Instrumentor generates a test driver to call the routines contained in

the library unit. This test driver is included at the end of the instrumented source file. At the

user's option, the Source Instrumentor also prepares a pretty printed source code listing.

This listing includes breakpoint numbers that are used in path analysis reports to identify

the statements that were executed.

Once the generated testbed has been compiled and linked, it can be invoked under TST

and then TST hands control to the Testing Subsystem. This subsystem provides a dual-win-

dow user interface. The user interacts with TST through the Dialogue Window, while the

Display Window provides useful information in the form of declarations for all the routines

that may be tested and for current assertions. (A TST option provides for handling data out-

put to the screen from the unit under test. This option allows, for example, directing the unit

output to the Testing Subsystem windows, or to another window superimposed over these.)

The user is asked for a test identification, and the name of the Test Data File (TDF) that

contains the assertions and calls that will be used to test the unit. If the named TDF does

not exist, the Testing Subsystem saves the user's subsequent test input in the named file so

that a test run can be easily repeated. TDFs can also be created or modified outside of TST.

Testing proceeds by calling procedures, functions, and entry points within the unit under

test and making assertions about the output. Each routine is identified using the numbers

given in the display window and, when the user requests its call, TST queries for input pa-

rameter values. He may enter actual parameter values using named or positional notation.

Alternatively, the user may request automatic test data generation for a parameter. The user

26-2

PART II TST

must also specify values for OUT mode parameters. These will be used for constraints

where required, for example, for string OUT parameters. The Testing Subsystem calls the

associated routine for each generated combination of test data. Once a test is complete, the

values of OUT and IN OUT parameters, or function results, are displayed in the Dialogue

Window.

Assertions can be given to check these test results. These assertions may be global, that

is, valid from the time the assertion is given until either the end of the test session or the

deletion of that assertion. Alternatively, local assertions are valid only for the next call com-

mand, or the multiple calls of a single routine that may be incurred by test data generation.

The validity of assertions is not checked when defined, but only when an assertion is eval-

uated for the specified results. When an assertion fails, a message is printed to the screen

and the testbed will either continue, abort and start report generation, or query the user

whether to continue or abort depending on how an AssertionHandling flag is set.

The user can give a number of other commands to the Test Subsystem. These are used,

for example, to control the display area, manage assertions, and control the handling of any

screen output generated by the routine under test.

TST automatically generates a TST report at the end of a testexecution. As well as gen-

eral identification information, this report lists the Ada declarations for all visible proce-

dures, subprograms, and entry points of the unit under test, test data that was generated, and

results of invoked routines and associated assertions. The user may request a path analysis

report to be included. This report provides a trace of the execution history and an execution

summary report that lists the number of times each statement (or group of consecutive state-

ments) was executed.

26.2 Observations

Ease of use. The on-line help provides summaries of Shell and Testing Subsystem com-

mands that are very helpful. A simple "?" provides a list of currently available commands.

Limited tailorability is available. The help file format is tailorable, allowing the user to

modifying existing messages or add new messages. The user can define the type of terminal

being used via an ANSI X3.64 Compatible Virtual Terminal Package Terminal capabilities

files, a variation of the TERMCAP developed in the Berkeley extensions to Unix. This al-

lows, for example, user-defined function keys.

26-3

TST PART II 1

Documentation and user support. The installation instructions received with the software

from the STARS Foundation Repository had some minor omissions. The TST documentation itself

is easy to follow and helpful. No direct support for the tool is available, although Intermetrics an- 0
swered questions that arose during this examination.

Instrumentation overhead. The instrumentation performed by TST imposes a substantial

overhead. The degree of code expansion largely depends on the number and type of type defini-
tions encountered, and number of subprogram units being tested. In the case of the Ada Lexical

Analyzer Generator, the source code size of a library routine containing the function LLFIND

alone was four blocks. When instrumented for full test data generation, this size increased to 124

blocks.

However, since bottom-up testing requires units to be tested independently or in small groups,

with careful partitioning of the code, the instrumentation overhead may not be a significant prob-

lem.

Ada restrictions. The generated control program is subject to the same restrictions that any

program would be in calling package subprograms. For example, values cannot be given to, or re-
ceived from, objects declared as private. TST imposes additional restrictions largely to do with the

format and content of input data to the subprograms being tested. These restriction include the fol-
lowing: (I) values must be given for all parameters that do not have defaults and named notation 9

is required for use of defaults; (2) all parameter values and assertion values must be literal values,

and (3) test data generation is not supported for tasks types, private types, limited private types, or

records types with nested variant parts.

Problems encountered. A couple of problems during instrumentation required minor manual 0

editing before the instrumented source code would compile. After instrumentation, some Ada use

statements had to be manually inserted to cater for inserted with statement. Some problems were

experienced generating test data for string subtypes. •

26.3 Recent Changes

Intermetrics has continued development of TST. The augmented version is, however, a propri- 0

etary Intermetrics tool.

26-4

PART II TST

26.4 Sample Outputs

Figures 26-1 through 26-6 provide sample outputs from TST.

26-5

TST PART II 0

Test Support Tool - Version 2.0 Page: I
Test Configuration Report

Program Under Test: LL COMPILE3

Text Date: 09/03/92

Test Day: THURSDAY

Test Timez 12:57:50

Data File: RUN3.TDF

Test ID: Teat LLFIND Run 3

Executable File: Name - NOT IVAZIJALE
Date -
Time -

Defaults: TST DIR - (ADATEST. TST. TSTDIR)
RPT CPL - 60

RPT LPP - 54
ASsURTxwxADLI;GN - CONTIN
SCRZZ0- CHO - ON

Test Support Tool - Version 2.0 Page: 2
Test Configuration Report

1 function LLFIND(
ITDM : LLSTRINGS;
WHICH : LLSTYLE) return INTEGEM;

2 procedure LLMJAIN;

Figure 26-1. TST Test Configuration File for Function LLFIND 0

26-6

PART II TST

Test Support Tool - Version 2.0 Page: 3
Parameter Report

GLOBAL Assertion 1) 1 < 33

Unit Under Test: (2)

procedure LLKAIN;

LOCAL Assertion 1) 1 - 12
Unit Under Test: (1)

function LLPIND(
ITEM LLSTRINGS;
WHICH : LLSTYLE) return INTEGERj

Parameter Entering Value Exiting Value

ITDE *Identifier ... '

WHICH GROUP
(RETURN.VALUE) 12

Unit Under Test: (1)

function LLUIND(
IT24 i LLSTRINGS;
WHICH : LLSTTLE) return INTEGERI

Test Data Automatically Generated
WHICH -> *

Parameter Entering Value Exiting Value

ITEM "ASCII ...
WHICH LITERAL
(RETURNVALUE) 10

IT20 "ASCII
WHICH NOW!ERMINAL
<RZTUR_ VALUE> 0

ITUI *ASCII ...
WHICH GROUP
(RETURN.VALUE) 0

............... ,*,,...* , , •J .ol t.... °.. .

ITD('ASCII .
WHICH ACTION

Figure 26-2. TST Parameter Report for Function LLFIND

26-7

TST PART II

<RTMURN.VALUZ> 0
,... J e, .* l ., e..... *...... ° ... •..

ITEM 'ASCII ...

WHICH PATCH
<RETURN.VALUE) 0

LOCAL Assertion 2) 1 - 0
Unit Under Test: (1)

function LLFIND(
ITEM : LLSTRINGS;
WHICH : LLSTTLE) return INTEGERi

Test Data Automatically Generated
WHICH -) *

Parameter Entering Value Exiting Value 0

ITEM ' .
WHICH LITERAL
(<RETURNVALUE) 0

.oo.. OI ,.. -.

ITEM • 0 •WHIrCH NONTERMN~mAL

(RETURN..VALUE) 0
.. ~e •

ITEM v • a

WHICH GROUP
(RETURN_VALUE) 0

WHICH ACTION
(RETURN.VALUE) 0

WHICH PATCH
<ZTURN_VALUE> 0

LOCAL Assertion 3) 1 - 12
Unit Under Test: (1)

function LLInD(
ITEM LLSTRINGS;
WHICH : LLSYTL•) return INTEGER; 0

Parameter Entering Value Exiting Value

ITUI OASCII ... a

WHICH LITERAL
MRETURNVALUE) 10

**0 LOCAL Assertion 3) 1 - 12 Failed

Figure 26-2 continued: TST Parameter Report for Function LLFIND

26-8

PART 11 TST

Teat Support Tool -Version 2.0 Page: 6
Execution History Report

Begin U.ýCONPZLE3 .LLK&IN. READGIAN. BUXLDRIGHT
(771

Begin LL_-CONPILE3 .LLMAZN. READGRAM. BUILDSELECT
[52-5511[55] 1551 155] [55) (55]1(55] [55] [551 [55] [55][55]
[55]1[55] [5511[55] [55] [55] [55] [55-58)([60] [55]

End LL COMPIPLE3. LLMAIN . READGRPJI. WUiLD'SELECT
Resumle LL._CONMB 11.13 .LLMAIN.PEADGR1M. BUILDRIGHT

[787
End lL _CONPILE3 .LLKAIN. READGRAN. BUILDRIGHT
Begin LL COMPILE3.LLFIND

[1-4) [.101 .10] [7-8]
End LL .COMBILE3 .LLFIND
Begin LLCOMBILZ3 .LLFIND

(1-6] (10] (7-8]
End LLCONPILZ3 .LLFIND

Begin LL -COMPILE3 .LLPIND

(1-61 (101 (711(9]
End LLCOILE3 . LLFIND
Begin LL -COMBZLE3 . LLFIND

[1-6] 1101 17] 19]
End LL._COI4PILM3.LLFIND
Begin LLC0MP1LZ3 .LLFIND

[1-6] (10) [71 [91
End LLCOMPILE3 .LLFIND
Begin LLCOMPILZ3 .LLPZND

(1-61 C10) (7]([9)
End LL. CONPILE3 .LLIInD

Begin ILýCONP!IE3 . LLPIND
[1-6) (11]

End LLCOHPILE3 .LLPIHD

Begin LL CONPILE3 .LLIN;D

End LL.COHPILE3 .LLFIND

Begin LLtCOIUILZ3 . LLFInD
[1-6] till

End ILL CO14PILE3 .LLFXnD
Begin LL.COXPILE3 . LLFInD

End LL COMPILE3 .LLFIND

Begin ELLCOMBILM3.LLMIN
(1--6] fill

End LL-CONPILE3 .LLFZND

Begin LL..COHPILE3 .LLFInD

[1-6] [10] [7-8)
End LL..COMPILE3 LLIND

Figure 26-3. TST Execution History Report for Function LIFIND

26-9

TST PART II 1

Teat Support Tool - Version 2.0 Pages 21

Exeoution Summary Report
-- ------------- -------- ------

Statement Exeaution Count

LLý_COHPILE3
[1-31 12
[4-51 65

[6] 50
[71 7
[E] 3

191 4

(ill 5
112] 0

(13-151 64
(16-19] 174
[20-231 50
(241 61
[25-261 460
[29-321 13
(331] 4
[34-351 0
[361 174
[37] 79
[38] 95
[391 174
[401 144
[41] 30
[42] 174
[43-443 0
[45-471 64
[48-49] 227
[50-511 64
[52-53] 1
[541 32
[551 640
[56-581 32
(591 6
[601 26
[61-]41 1
[65-701 64
[711 1
[72-741 26
(75-781 1

Figure 26-4. TST Execution Summary Report for Function LLFIND

26-10

Smmm l m I m m• I m

PART II TST

GLOBAL ASSERT(1 < 33
--- 2
---- '1

LOCALASSERT(1 - 12)
CALL ROUTINE 1 (
ITEM -> Identifier

WHICH -) GROUP

- it

CALL ROUTINE I (
ITEM * 'ASCII

WHICH > LITERAL

CALL ROUTINE 1 (
ITEM -> "ASCII

WHICH -) PATCH

---- '1

LOCALASSERT(1 - 0
CALLROUTINE I

ITEM "> -
WHICH -> LITERAL
I;
LOCALASSERT(1 - 0

CALL_ROUTINE 1 (
ITEK ->
WHICH -, NONTERMINAL

LOCALASSERT(I - 0)
CALLROUTINE 1 (
ITEM -> a

WHICH -> GROUP

LOCALASSERT(1 - 0)
CALLROUTINE 1 (
ITEM-> '

WHICH -> ACTION

LOCALASSURT(1 - 0)
CALL ROUTINE 1
ITU4) -
WHICH -) PATCH
I;
--. I

LOCALASSERT(1 - 12)
CALL_ROUTINE 1 (
ITEM -) 'ASCII

WHICH -> LITERAL

).I

Figure 26-5. TST Sample Test Data File for Function LLFIND

26-11

0mm mm rmilmIm

TST PART 11

with LL.DECLARATIONS, INTEGERTEXT10, TEXT_.0; S
package LL._COMPILE3 is
use LLDECLARATIONS, INTEGER TEXT_10, TEXT_10;

PARSINGERROR: exception; -- for fatal parsing errors
type LLSTYLE is (LITERAL, NONTERMINAL, GROUP, ACTION, PATCH);
type LLSYMTABENTRY is -- for symbol table entries

record
KEY, LLSTRINGS; - literal string or group identifier
KIND: LLSTTLE; -- literal or group

end record;

LLSYMOLTABLEt array (1 .. LLTABLESIZE).of LLSYMTABENTRY;
-- the symbol table for literal terms

function LLFIND(ITE4: LLSTRINGS; WHICH: LLSTYLE) return INTEGER;
procedure LLMAIN;
end LL COMPILE3;

with LL DECLARATIONS, INTEGERTEXT_10, TEXT 10;
package body LLCONPILE3 is
use LLDECLARATIONS, INTEGER TEXT_10, TEXT1O;•

function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER is
- Find item in symbol table - return index or 0 if not found.
- Assumes symbol table is sorted in ascending order.
LOW, MIDPOINT, HIGH: INTEGER;

begin
LOW- 1;
HIGH :- LLTABLESIZE + 1l
while LOW H- NIGH loop

MIDPOINT : (HIGH + LOW) / 2;
if ITEM (LLSnhDOLTABLE(MIDPOINT) .KEY then

HIGH :- MIDPOINT;
elsif ITEM - LLSYMBOLTABLZ(MIDPOINT). KEY then

if LLSYMBOLTABLE(MIDPOINT) .KIND - WHICH then
return(MIDPOINT);

else
return(0)g

and if;
else - ITEM) LLSUMMOLTABLE (MIDPOINT) .KE

LOW : MIDPOINT + 1;
end if;

end loop;
return(0); - item ip not in table

end LLPIND;

procedure LLKAIN is

end LLMAIN;
"end LLCONPILE3;

Figure 26-6. TST Function LLFIND 0

26-12

PART If Test/Cycle & Metrics Manager

27. Test/Cycle and Metrics Manager

Test/Cycle supports the definition of functional requirements and validation criteria

such as test plans, test runs, and test cases. It provides users with a graphical object-oriented

framework for developing test plans, managing of software testing efforts, and problem re-

porting. The concept of software builds supports incremental development.

Metrics Manager is a measurement system that focuses on productivity and quality im-

provement. It is supported with an industry data base of software metrics that allows Met-

rics Manager users to assess their productivity in relation to other organizations. Currently

with data from over two hundred projects from some twenty five Fortune 500 organiza-

tions, this database is expected to double in size in the near future.

27.1 Tool Overview

Test/Cycle and Metrics Manager are marketed by Computer Power Group, Inc. This or-

ganization primarily markets testing services, consulting, and training in software testing

and quality assurance. It is a founding member of the Quality Assurance Institute and still

serves as a board member. Computer Power Group continues to undertake research into

software quality measurement in conjunction with the Quality Assurance Institute and oth-

er groups.

Test/Cycle was released in 1990 and is used at some 10 to 15 sites. Metrics Manager

first became available in 1989 and is used at 30 to 35 sites. Both tools are PC based and run

under MS-DOS; Test/Cycle is available under Microsoft Windows. Both tools are avail-

able under IBM's Ad/Cycle tool set. Metrics Manager can import project data from Project

Workbench; it also supports a bidirectional interface to Project Bridge for exchange of

function point data. At the time of examination, the price of Test/Cycle started at $3,500.

Metrics Manager is now marketed by ABT Technologies and its price currently starts at

$14,950; this includes a consulting project to set up appropriate metrics for the client. The

examinations were performed on Test/Cycle version 3.02 and Metrics Manager version

2.02.

27-1

Test/Cycle & Metrics Manager PART II •

27.1.1 Test/Cycle Overview

Test/Cycle supports Computer Power Group's Testing Management Methodology. The 0
underlying test model is based on the following object types:

"• Project. The collection of all data associated with a system under test.
"• Requirement. A functional specification of what an application must do.
"• Build. A build is a functionally independent group of modules that supports a well- 1

defined system function or a small logical subset of a system.
"* Test plan. Initially records the overall testing strategy, test case design, and test case

execution. Subsequently includes information on the builds, test runs, and test cases
associated with the strategy, and records the test execution results.

"* Test run. A series of related test cases combined to test specific requirements, or to S
perform a specific category of testing.

"• Test case. Consists of the description of a program's input data and expected output,
together with a description of the steps needed to execute the test case.

"• Test file. An object containing information about the actual data that is used during
execution of tests. •

"• Component. A product of the development process, primarily program names, source
code names, and libraries supported by a description such as what it contains, how it
is created, and who is responsible for maintenance.

Links are used to define the relationships between instances of these objects. While each

test case is automatically linked to a single test run, the user can define the desired links

between other objects. (The link between test runs and test cases is the only non-commuta-
tive link; it is established from the test case perspective so that every test case must belong

to a test run.) Test/Cycle does impose some rules that guide the definition of legal links; for

example, only leaf requirements may be linked to a test case.

A user starts by defining a project in terms of a unique identifier, organizational infor-

mation, and narrative ASCII text; similar information is captured for all object types. The

project description may be accompanied by characteristics that subsequently can be used

to classify both requirements and test cases.

Typically, the next step is to define the requirements that will be used to drive test plan-
ning. An initial high-level requirement is defined and successively refined, building a hier-

archical tree-like structure of progressively more detailed requirements. Each requirement

is automatically assigned a hierarchy level number that indicates its relative position within

the hierarchy. A special flag is used to indicate whether testing of a requirement is required.

A status of testing not required invokes special handling; for example, the user must give a
reason, and these exceptional cases cannot be linked to a test case or a test run.

27-2

PART II Test/Cycle & Metrics Manager

The user then proceeds to describe the other necessary objects. In addition to the basic

descriptive information, each type of object requires some special data. Builds, for exam-

ple, form a logical grouping of test runs and may require a build group number and group

sequence number to indicate build sequencing. Additionally, a test level attribute represents

the test level (integration, acceptance, or released) achieved by a build. Test runs are ac-

companied by a test log that identifies the person responsible for the testing and maintains

a record of test events, and test run sequencing information that indicates dependencies be-

tween test runs. Test cases include information on test set up, the tester, and one or more

description steps. Each test case description step includes the results expected, a pass or fail
indicator, and failure action. Test/Cycle distinguishes between three types of test plan: unit,

integration, acceptance. In each case, the narrative description is given according to a pre-

formatted outline, and is accompanied by attributes and the actual test plan definition. Test

files are supported by capturing the record type for records contained in the test file. Final-
ly, components have a distinguishing predefined type such as a program type.

Based on its placement in the hierarchy and association with other requirements, a re-

quirement may be subject to one of three levels of testing: high, intermediate, and detail.
Test/Cycle generates a separate validation matrix for each level. In the High Level Valida-

tion Matrix requirements are cross-referenced to builds, in the Intermediate Level Valida-

tion Matrix to test runs, and in the Detail Level Validation Matrix to test cases. These

matrices show both explicit and implicit links. (An implicit link is one created when a re-

quirement in the subtree of a higher level requirement is directly linked to a build, test run,
or test case.) One of their primary purposes is to show which test cases test which require-

ments and thus provide insight into test completeness. Test/Cycle measures requirements

coverage as the percentage of requirements that are validated by a set of test cases. Based
on user entries, Test/Cycle also tracks the number of times a test run is executed. This al-

lows reporting on the number and percent of test steps that have executed successfully, with

the date and time a test case was 100% validated. In addition to ensuring that all require-
ments are tested and all test cases are used, these matrices provide additional types of in-

formation. The cross-reference between requirements and components, for example, helps
to identify the parts of a system affected by a requirement change and the tests that need to

be rerun.

Test/Cycle provides a range of off-line reports and several on-line reports. Off-line re-

ports are available to provide descriptions of the existing objects of each type. On-line dis-

plays provide various status information, for example, the status of each test case linked to

27-3

Test/Cycle & Metrics Manager PART II 0

a leaf requirements and of individual test cases in the test plan. Additionally, an error/ex-

ception status report gives a series of eleven consistency checks of Test/Cycle maintained

data, for example, test cases with no requirements linked. Some of these checks employ •

user-defined threshold values, such as the number of leaf requirements with more than an

acceptable number of test cases linked. Progress reporting is provided for each object. In

each case, an on-line validation status report summarizes the status of test cases or runs, as

appropriate, linked to that component. This information includes the number (and percent- •

age) of test cases, or runs, that have passed, and cumulative validation statistics for the ob-

ject in question.

Test/Cycle reports and tracks Work Requests (WRs). These can be classified as prob- 0

lem, change, or other (other questions or discrepancies) requests. While roughly similar in-

formation is captured for problems and changes, less is captured for other requests. For

example, statistical information is only kept for problems and changes; details are kept on

problem insertion and discovery, a characterization, and cost to fix data (for problems) or

cost to implement data (for changes). Problem and change requests capture information

about the phase and activity when a problem was introduced and when identified; this pro-

vides some support for continual process improvement. They allow five priority levels,

three severity levels, and distinguish between five different classifications. 9

For WRs in general, sequence numbers are automatically assigned to support an audit

trail. WRs are treated as an object type and, consequently, they can be linked to instances

of any other object type. A checklist is maintained showing the status of each WR. Pre-

defined reports are available to provide descriptions of individual WRs and a WR log. 0

27.1.2 Metrics Manager Overview

Metrics Manager supports the collection and analysis of quality and productivity met- •

tics for management purposes. Data can be collected on a monthly, quarterly, or annual ba-

sis to monitor the performance of an organization and track the impact of new methods,

organizational structures, and technologies. The user starts by modeling the MIS function.

The highest level of structure is called the Enterprise. An Enterprise consists of MIS De- 0

partments, each of which has a number of products. For metrics reporting and graphing pur-

poses, products can be defined as members of an overall application or system, yielding a

composite product called an Application. Aggregates are a special subset of an application

27-4

0

PART II Test/Cycle & Metrics Manager

which combine products that are not part of a single application; they allow, for example,

reporting on all enhancements regardless of product identification.

Data is stored in a Basic Operating Database (BOD) which captures the lowest level

data for each enterprise, each MIS department within the enterprise, and for each product

within each MIS department. This includes quality, productivity, cycle time, cost, size,

scope, and reliability data as well as indicative and descriptive data used for comparison

and categorization purposes. Over three hundred measures and attributes are captured.

Once a set of basic data items has been entered in the BOD and validated, the quality and

productivity metrics can be computed. These are computed using data up to a user-defined

Period Ending Date, and only for products whose development cycle has ended by this date.

Subsequently database reports are available to provide information at the enterprise, MIS,

and product levels.

The computed data can also be used to produce a range of graphs depicting the enter-

prise performance. The user selects x- and y-axes from sets of predefined options and, op-

tionally, one of a number of predefined filters that select a subset of data for graphing. Up

to eight graph definitions can be stored for subsequent reuse. While basic metrics graphs

operate against enterprise data, the user can request graphs that compare the data from an

Enterprise to the data from the industry database. (The industry database is a regularly up-

dated, statistically validated database that has been built from client data.) The graphing

function also allows each enterprise to define a Critical Metric Set (CMS), that is, those

metrics that have been determined to be key management factors in determining enterprise

success. Graphs are accompanied by a graph audit report that prints the values from each

product that are used to develop each graph. This is intended for use in understanding the

metrics calculations and in comparing the same attribute or metric across all applicable

products. Graphs are displayed on the screen, but may be sent to a file for subsequent print-

ing on a dot-matrix or laser printer.

Finally, a merge/extract function is provided for those cases where multiple copies of

Metrics Manager are installed across an organization. It is used to consolidate data into a

single database for analysis and reporting purposes.

27-5

Test/Cycle & Metrics Manager PART II

27.2 Observations

Ease of use. These tools use an object-oriented, graphical, Common User Access

(CUA) user interface to facilitate tool use. Both interfaces are menu driven with context-

sensitive on-line help and an analog box of information for selections where appropriate.

The user can use a mouse to select objects in different ways: "point and click," double

click, or, unique to Test/Cycle, "drag and drop" which represents direct manipulation of ob-

jects; accelerator keys are provided as an alternative method of user interaction. Two types

of editing are available. The first is a limited edit using keyboard editing keys such as insert,

backspace, home. The second type available through the zoom narrative button is a full edit

which allows use of the Windows Clipboard Editing facility. The search filters and user-

tailorable project characteristics provide a basis for on-line searching of the test data base.

Test/Cycle also supports on-line browsing of the links between objects. Test/Cycle sup-

ports only limited customization: the test plan format can be modified by editing the test

plan narrative file to include a desired outline.

Documentation and user support. The documentation for these tools is easy to follow

and complete.

Problems encountered. No problems were encountered in the use of these tools.

27.3 Planned Additions

A new version of Metrics Manager is due for release in late 1992. This new release will

include additional functionality. For example, Metrics Manager will help a user to deter-

mine the scope of impact of a proposed requirements change, and allow reporting on this

maintenance effort independently from the rest of the system. Both Test/Cycle and Metrics

Manager will be integrated with ABT Technologies Project Manager Workbench and mar-

keted by ABT Technologies. In October 1992, Computer Power Group will release a ver-

sion of Metrics Manager that integrates with Test/Cycle.

Future versions of Test/Cycle will incorporate Microsoft Word to support entry and ed-

iting of requirements. Additionally, user-defined reporting and reliability analysis will be

supported.

27-6

PART II Test/Cycle & Metrics Manager

27.4 Sample Outputs

Figures 27-1 through 27-22 provide sample outputs from Test/Cycle and Metrics Man-

ager.

27-7

Test/Cycle & Metrics Manager PART II

Page 1
Project: Gift Pack Order System
Wednesday, September 16, 1992
11z10:29

TEST/CYCLE RXQUIREMENTS HIERARCHY REPORT

Ancestors:

None.

Parent:

Gift Pack Order System

Children,

1 System Entry (Main Window) +
2 Maintain Order File +
3 Order Inquiries +
4 Work Order Processing +
5 Order Pick-up/Delivery +
6 End-of-Day Processing + S
7 Report Generation +

Page 2

TEST/CYCLE RSOUIRDaMITS HIERARCHY REPORT

Ancestors:

Gift Pack Order System

Parent:

1 System Entry (Main Window) S

Children:

1.1 Menu Selection +
1.2 Maintain User IDs
1.3 Maintain Statistics
1.4 Maintain Parameter Values - •

Page 3

TEST/CYCLE REQUIREMENTS HIERARCHY REPORT

Ancestors:

Figure 27-1. Test/Cycle Requirements Hierarchy Report

27-8

PART II Test/Cycle & Metrics Manager

Gift Pack Order System
1 System Entry (Main Window)

Parent:

1.1 Menu Selection

Children:

1.1.1 Enter GPOS System -

1.1.2 Format Main Menu
1.1.3 Validate Menu Selection -

1.1.4 Validate User ID
1.1.5 Ifer to Order Entry 5cr -

1.1.6 Xfer to Work Ords Scr -

1.1.7 Xfer to Ord Pick-up Scr -

1.1.8 Xfer to End of Day Proo Scr -
1.1.9 Zfer to Ord Maint Scr -

1.1.10 Exit System
1.1.11 Diap "110 Invalid User ID" Msg -
1.1.12 Disp 120 Inv Select' Err Mug -
1.1.13 Disp 'Ord z Entered" MNg -
1.1.14 Xfer to inquiry Scr -

1.1.15 Xfer to Reports Scr -

1.1.16 Xfer to Paran File Maint -

Page 11

TEST/CYCLE REQUIREMENTS HIERARCHY REPORT

Ancestors:

Gift Pack Order System
7 Report Generation

Parent:

7.1 Report Menu

Children:

1.2 Maintain User IDs
7.1.1 Generate Analysis Report
7.1.2 Print Work Orders on Request -

Figure 27-1 continued: Test/Cycle Requirements Hierarchy Report

27-9

Test/Cycle & Metrics Manager PART II

Page 1
Project: Gift Pack Order System
Wednesday, September 16, 1992
11:05:36

TEST/CYCLE REQUIRD0ENT DESCRIPTION REPORT •

Requirement ID: 1.1 Menu Selection
Author. Jackie Jones

Requestor:
Testing Not Required: Not Applicable

Narrative:

No Narrative Found

Linkages:

To Characteristics:
None.

To Builds:
None.

To Test Cases:
None.

To Test Runs:
Main Menu Entries Validation

To Components:
None.

To Test Plans: S
None.

To Work Requests:
None.

Figure 27-2. Test/Cycle Requirement Description Report

27-10

PART 11 Test/Cycle & Metrics, Manager

Figure 27-3. TestlCycie High-Level Validation Matrix Screen

______ ~.. j.Team ---

IL

Figure 27-4. Test/Cycle Intermediate Level Matrix Screen

~arm

p ~Figure 27-5. Test/Cycle Detail Level Matrix Screen

27-11

TestCycle & Metrics Manager PART II 1

Page 1

Project: Gift Pack Order System
•

Wednesday, September 16, 1992
11:24:27

TEST/CYCLE BUILD DESCRIPTION REPORT

Build ID: 1-System Entry & Param Maint •

Author: Jackie Jones

Narrative:

This build consists of the main menu and parameter file maintenance
functions. These functions allow the user to customise the system. The
main menu function allows the user to select one of nine functions: Order
Entry, Work Order Processing, Order Pick-Up, End-of-Day Processing, Order
Maintenance, Inquiry, Report Generation, Parameter File Maintenance, or
System Exit, When the user selects the exit function

Build Group Number:
Sequence Numbeor

Test Level Achieved: Integration Demoted: No

Linkages:

To Test Runs:
None.

To Requirements:
System Entry (Main Window) Update Ord Status to Complete

To Components:
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-6. Test/Cycle Build Description Report

27-12

PART II Test/Cycle & Metrics Manager

Page 2

Projects Gift Pack Order System
Wednesday, September 16, 1992
11s31:44

TEST/CYCLE COMPONENTS DESCRIPTION REPORT

Component ID: Programl
Author: Jackie Jones

Narrative:

This is a sample of a program description. It is used to ...

Kind of Component: Program

Linkages:

To Requirements:
Order Enquiries

To Builds:
None.

To Test Cases:
None.

To Test Files:
None.

To Test Planss
None.

To Work Requests:
None.

Figure 27-7. Test/Cycle Components Description Report

27-13

Test/Cycle & Metrics Manager PART II 1

Page 1

Project: Gift Pack Order System

Wednesday, September 16, 1992
11t28:22

TEST/CYCLE TEST RUN DESCRIPTION REPORT

Test Run ID: MM Select Validation
Author: Jackie Jones

Narrative:

The Maim Menu Select Validation Test Run consists of a set of test cases
that attempt to wbreak" the selection criteria of the main menu. In •
addition to verifying that the standard selection methods work, the test
cases, which are a capture/playbaok of screen images, try to ...

Test Run Group Number:
Test Run Sequence:

Test Log.:
Tom Smith 7/25/91

Linkages:

To Builds:
None. S
To Requirements:
None.

To Test Cases:
None.

To Test Files,
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-8. Test/Cycle Tes Run Descwlption Report

27-14

PART 11 Test/Cycle & Metrics Manager

Sad ~ s Els Cm IP..d ftsi

Won GNP ami Ms

r -

Figure~~~~~ 2-.Ts/ylReurmns Vldto ttsSre

--"M usISone o2ft USw

Figure 27-90. Test/Cycle Reqtuirmnt Validation Status Screen

27s-15 1

Test/Cycle & Metrics Manager PART II

Project: Gift Pack Order System
Page

Wednesday, September 16, 1992
11:40:18

TEST/CYCLE TEST CASE DESCRIPTION REPORT

Test Case ID: Inv IDa
Author: Jackie Jones
Tester:

Setup for Test:

System Started, Main Menu on Screen, cursor on User ID
field

Test Steps:

Pass Description of Test Expected Results Action if Fail

1. Yes Hit (EITER) -Display ErrMag 0110
Invalid User ID8

-Cursor on User ID.

-User ID
Highlighted

2. Yes - Key 01230 in User -Display ErrMag
ID. '110 Invalid User

ID.'
Hit (ENTER) -User ID

Highlighted

Linkages:

To Characteristics:
None.

To Requirements:
Disp "110 Invalid User ID' Msg Format Main Menu
Display Ord Inf for Pick-up Validate Menu Selection

Narrative:

The Parameter File must contain one or more valid user IDs for validation
of the Main Menu User ID and Selection entries.

Figure 27-11. Test/Cycle Test Case Description Report

27-16

PART II Test/Cycle & Metrics Manager

W~f M TeooCa: 0-b Mb

Tewf= mow"-po

Figure 27-12. Test/Cycle Test Cas Linkages Screen

1d6Sftini #P ftairniw

II• -- no-l : =o,"F•
I m

W-ft
_____________t ,: Ci

I t

Figure 27-13. Test/Cycle Test Case Referenced by Requirement Screen

27-17

Test/Cycle & Metrics Manager PART II

Page 2.

Project: Gift Pack Order System

Wednesday, September 16, 1992
11s36,03

TEST/CYCLE TEST FILE DESCRIPTION REPORT

Test File ID: Main Menu Val IDs Param File
Authors Jackie Jones

Narrative:

The Parameter File must contain one or more valid user IDs for validation
of the Main Menu User ID and Selection entries.

Test File Types Sequential

Linkages:

To Test Runs:
None.

To Test Cases:

None.

To Components:
None.

To Work Requests:
None.

Figure 27-14. Test/Cycle Test File Description Report

27-18

PART II Test/Cycle & Metrics Manager

ID: 1 Category: Open Problem
Instigator: Jackie Jones
Requestor:
WR Date: 1/8/92 Priority:

WR Type:

Narrative:

This is a sample work request for a problem report. It is used to ...

Status: None

Error: No Problem metrics record found for 1

Linkages:

Paradox ISAM Mulator(Cmp).

Figure 27-15. Test/Cycle Work Request Description

Page 1
Project: Gift Pack Order System
Wednesday, September 16, 1992
11:44:10

TEST/CYCLE WORK RZQUZST LOG REPORT

Open Problem Work Requests

Cat ID Priority Type Narrative Status

OP 1 (some text) None
OP 2 (some text) None

Figure 27-16. Test/Cycle Work Request Log Report

27-19

Test/Cycle & Metrics Manager PART II

SAMPLE OUTPUTS FROM MARS

09/24/92 11:20 METRICS MANAGER Page

[MD001] V3.02 METRICS DATA BASE
Eaterprise: 5550

PERIOD ENDING SEP, 1992

ENTERPRISE

TOTAL SALES REVENUE: $700,9000,000

TOTAL NUHMER OF APLOWYEES: 6,000

SIC CODE: -1
SECONDARY SIC CODE: -1

Figure 27-17. Metrics Manager Database Full Report

27-20

PART II Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 2

INDBOO2] V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems

PERIOD ENDING SEP, 1992

NIS

HARDWARE BUDGET: $2,000,000

SOFTWARE BUDGET: $500,000

PERSONNEL BUDGET: $7,000,000
FACILITIES BUDGET: $2,000,000

OTHER BUDGET: $2,000,000

TOTAL BUDGET: $13,500,000

TOTAL FUNCTION POINTS
OF INSTALLED BASE: 0

NUMBER OF TERMINALS USED FOR
DEVELOPMENT AND MAINTENANCE -

Mainframe Terminals: 150
PC Workstations.. 100

TOTAL MIPSi 46.1

TOTAL PROGRAMS: 4,582
TOTAL KLOC: 2,726

TOTAL STAFF: 315
Total Maintenance Staff: -1
Total Technical Staff: 85

AVERAGE DEPARTMENT LABOR BATE: $25.00
MAINTENANCE LABOR RATE: $-1.00

Figure 27-17 continued: Metrics Manager Database Full Report

27-21

Test/Cycle & Metrics Manager PART II

09/24/92 11:20 METRICS MANAGER Page 3

[NDB0031 V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems
Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT ATTRIBUTES

TYPE OF EFFORT: A - New Development
DEVELOPMENT END DATEs 04/88
DATE OF ORIGINAL REOUEST: / /
DATE NEEDED: 02/27/87

DATE STARTED: 05/31/86
DATE OF FIRST PRODUCTION UTILIZATION: 04/30/88
DATE LAST COMPONENT INSTALLED: 04/30/88
DURATION: 700 DAYS
BACKLOG PERIOD: 0 DAYS

TARGET DATES
Original: 01/01/88 Revised: / / Actual: 01/01/88

DAYS VARIANCE: 0 DAYS

TOTAL KLOC: 29

FUNCTION POINT COUNTS (Actual Approved)
Adjusted Function Points (IFPUG): 1,630
Function Points Override: 0

USER INVOLVEMENT
Definition Phase: H
Construction Phase: H
Operation Phase: H

PERCENT OF MIS TO TOTAL PERSONNEL
Definition Phase: 90%

Construction Phase: 90%

Operation Phase: 95%

PROJECT MANAGER'S EXPERIENCE: 2 Years
STAFF APPLICATION EXPERIENCE: 2 Years
TECHNICAL YEARS OF EXPERIENCE: 6 Years

SYSTEM AVAILABILITY: 95%
SYSTEM RESPONSE TIME: 5 Seconds

NET PRESENT VALUE: -1
RETURN ON INVESTMENT: -1.00%

ACTUAL PEAK TEAM SIZE: 5

Figure 27-17 continued: Metrics Manager Database Full Report

27-22

PART II Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 4

[MDBOO41 V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems

Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT COST

DEVELOPMENT COSTS Original Revised Actual

Labor $350,868 $575,984 $737,523
Hardware $70,000 $120,296 $263,153
Expense $0 $0 $0

TOTAL $420,868 $696,280 $1,000,676

ACTUAL TECHNICAL LABOR COST: $0

TOTAL PRODUCTION COST: $10,400
Production Rerun Cost: $-1

DEFECT REMOVAL Definition Construction Operation
COSTS Phase Phase Phase TOTAL

Labor $2,600 $14,325 $33,575 $50,500
Machine $-l $5,900 $14,800 $20,700

TOTAL $2,600 $20,225 $48,375 $71,200

FAILURE COSTS
Internal Labor: $25,900
Internal Machine: $1,000

Total Internal Failure: $26,900
External Failure: $-1
Production Rerun Cost: $-I

TOTAL FAILURE COST: $26,900

Figure 27-17 continued: Metrics Manager Database Full Report

27-23

Test/Cycle & Metrics Manager PART II

09/24/92 11:20 METRICS MANAGER Page
[MDBOO51 V3.02 METRICS DATA BASE

Enterprise: 5550
MIS: Management Information Systems
Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT EFFORT (HOURS)

DEVELOPMENT LABOR EFFORT
Original: 8,354 HOURS

Revised: 12,058 HOURS

Actual: 15,365 HOURS

ACTUAL TECHNICAL
LABOR EFFORT: 0 HOURS

DEFECT REIOVAL EFFORT
Definition Phase: 104 HOURS
Construction Phase: 573 HOURS
Operation Phase: 1,343 HOURS

TOTAL: 2,020 HOURS
nu...

INTERNAL FAILURE EFFORT: 1,036 HOURS

Figure 27-17 continued: Metrics Manager Database Full Report 0

27-24

PART II Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 6

[MDB006] V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems
Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT QUALITY

DEFECTS BY
INSERTION PHASE Minor Moderate Severe Total

In Definition -1 85 -1 85
In Construction -1 66 -1 66
In Operation -1 167 -1 167

TOTAL 0 318 0 318

DEFECTS BY
DETECTION PHASE Minor Moderate Severe Total

Definition -1 26 -1 26
Construction -1 125 -1 125
Operation -1 167 -1 167

TOTAL 0 318 0 318
ii fliflilii== IIH I fi i==latllnll~ il m ii

Minor Moderate Severe Total

FAILURES -1 126 -1 126

Figure 27-17 continued: Metrics Manager Database Full Report

27-25

Test/Cycle & Metrics Manager PART II

09/24/92 11:20 METRICS MANAGER Page 7

IMDBOO71 V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems
Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT METRICS

MONTHS IN OPERATION: 12 Months

PRODUCTIVITY
KLOC Per Staff Month: 0.327

Function Points Per Staff Month: 18.308

CYCLE TIME (Elapsed Days / Function Point)
Overall Cycle Time: 0. 000 Days
Development Cycle Time: 0.429 Days

COST / FUNCTION POINT
Development Unit Cost: $613.91
Development Labor Unit Cost: $452.40
Development Defect Cost Rate: $14.00

COST PER MONTH / FUNCTION POINT
Production Defect Cost Rate: $2.47
Failure Cost Rate: $1.38
Production Unit Cost Rate: $0.53

RELIABILITY
Mean Time To Failure: 0.0952 Months per Failure
Monthly Failure Rate: 0.0064 Failures / Month / FP
Monthly Failure Rate lt 6 Months: 0.0090 Failures / Month / FP
Monthly Failure Rate Last 6 Months: 0.0039 Failures / Month / FP
Failures Per Execution Hour: 9.0000 Failures per Hr
Failure Rate Per Execution Hour: 0.0055 Failures per Hr / 0P

PERFORMANCE
Effort Variance: 27.00%
Cost Variance: 44.00%
Schedule Variance: 0.00%

QUALITY 0
Defect Density: 0.195 Defects / FP
Development Defect Removal Efficiency

(Development Defects / All Defects): 0.475

CUSTOMER SURVEY METRICS:

User Satisfaction Strategic Tactical 0
With SDP Value Value

8604: N/A

Figure 27-17 continued: Metrics Manager Database Full Report

27-26

PART II Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 8

[NDBOO3] V3.02 METRICS DATA BASE
Enterprise: 5550

MIS: Management Information Systems
product. Product B - lst Enhancement

PERIOD NDrING SEP, 1992

PRODUCT ATTRIBUTES

TYPE OF EFFORT: B - Major Enhancement

DEVELOP4ENT END DATE: 01/99

DATE OF ORIGINAL REQUEST: 09/01/87

DATE NEEDED: 01/01/89

DATE STARTED: 06/01/87
DATE OF FIRST PRODUCTION UTILIZATION: 01/01/89
DATE LAST C0MPONENT INSTALLED: 01/31/89
DURATION: 610 DAYS
BACKLOG PERIOD: -92 DAYS

TARGET DATES
Original: 10/01/88 Revised: / / Actual: 01/31/89

DAYS VARIANCE: 122 DAYS

TOTAL KLOC 1

Figure 27-17 continued: Metrics Manager Database Full Report

27-27

Test/Cycle & Metrics Manager PART II

09/25/92 09%52 METRICS MANAGER Page 1
[MDB008] V3.02 METRICS DATA BASE

Enterprise: 5550
MIS: Management Information Systems

PERIOD ENDING SEP, 1992

MIS SUMMOARY

Total products in MIS: 5

---- asic Measures e- - - --- Metrics ---

"]LOC PER STAFF MONTH: 1.027
TOTAL KLOC: 314 F/P PER STAFF MONTH: 18.388

TOTAL FUNCTION POINTS: 1,630 Cost / Function Point

DEVELOPMENT UNIT COST: $613.91
ACTUAL LABOR EFFORT: 52,981 DEVEL. LABOR UNIT COST: $452.47
ACTUAL DEVELOPMENT COST: $2,874,715 DEV. DEFECT COST RATE: $14.00
TOTAL DEFECT REMOVAL COST: $82,500 PROD. DEFECT COST RATE: $2.47
TOTAL FAILURE COST: $32,075 FAILURE COST RATE: $1.38

PROD. UNIT COST RATE: $0.53

TOTAL DEFINITION DEFECTS: 50 Quality
TOTAL CONSTRUCTION DEFECTS: 152 - a
TOTAL OPERATION DEFECTS: 175 DEFECT DENSITY PER F/P: 0.1951

DEVIL. DEFECT REMOVAL
TOTAL DEFECTS: 377 EFFICIENCY: 0.536

TOTAL DEFECTS INSERTED IN - Reliability
DEFINITION: 111
CONSTRUCTION: 91 FAILURES PER EXECUTION HOUR: 2.3276
OPERATION: 175

TOTAL FAILURES: 135

Figure 27-18. Metrics Manager Enterprise & MIS Metric Summary Report

27-28

S

PART II Test/Cycle & Metrics Manager

09/25/92 09:52 METRICS MANAGER Page 2

(NDB008] V3.02 METRICS DATA BASE
Enterprise: 5550

PERIOD ENDING SEP, 1992

ENTERPRISE SUMMARY

Total products in ENTERPRISE: 5

Basic Measures--------

KLOC PER STAFF MONTH: 1.027

TOTAL KLOC: 314 F/P PER STAFF MONTH: 18.388

TOTAL FUNCTION POINTS: 1,630 Cost / Function Point

DEVELOPMENT UNIT COST: $613.91
ACTUAL LABOR EFFORT: 52,981 DEVEL. LABOR UNIT COST: $452.47
ACTUAL DEVELOPMENT COST. $2,874,715 DEV. DEFECT COST RATE: $14.00

TOTAL DEFECT REMOVAL COST: $82,500 PROD. DEFECT COST RATE: $2.47
TOTAL FAILURE COST: $32,075 FAILURE COST RATE: $1.38

PROD. UNIT COST RATE: $0.53

TOTAL DEFINITION DEFECTS: 50 Quality
TOTAL CONSTRUCTION DEFECTS: 152
TOTAL OPERATION DEFECTS: 175 DEFECT DENSITY PER F/P: 0.1951

SDEVML. DEFECT REMOVAL

TOTAL DEFECTS: 377 EFFICIENCY: 0.536

TOTAL DEFECTS INSERTED IN -- Reliability
DEFINITION: 111
CONSTRUCTION: 91 FAILURES PER EXECUTION HOUR: 2.3276
OPERATION: 175

TOTAL FAILURES: 135

Figure 27-18 continued: Metrics Manager Enterprise & MIS Metric Summary Report

27-29

Test/Cycle & Metrics Manager PART II

"FU-.-H IO POI•TS PROD•UTIVITY " ,lay lax Fe'.ir F., L$Jt k-ý," , T: v.,_.' -C.

F
:

1p;

'an!M

u 14,6

IL

I'VI'.

.N Ro ,i

NeW Maj-r Oony4)er- RMtne inor M1ajor Oiher

Djeop En~hance Miaint. 'Mod M.'V , ti k-,ý

TYP OF FT0

Figure 27-19. Metrics Manager Function Points Productivity vs. Type of Effort

0

27 -30

PART II Test/Cycle & Metrics Manager

E: O VE DEV. DEECT M ALOVL EFFICIEI.CY I-:1 •"-":-
.32Y lix Feirod Fro , -,, T: •,1C

I' f
0 . 5."O

10.,0
IRI

ie.

ISZ OF.RO

27-3

I o /o •'

. '•,mi m a. ed~iu Lare Ver..4 Leaec

sIt o: PROWCT

Figure 27-20. Metrics Manager Development Defect Removal Efficiency vs. Size of Product

27-31

Test/Cycle & Metrics Manager PART II

E' •8 ,'v;. & IDEV. DEFECT AIOVAL EFFICIENCY " .

32Y 56X Fericdý From 04/"'O; To LI.0

r1
'E

0. 0

dA,

'1'i /4J

L BR.L

0.I@
E -L~- I 1 F, &T TIM - C4273

E'•Tr.•' T• BTS' M..f5£L]

TOOLS UJiB!,i

Figure 27-21. Metlrics IManaer Development DefetI Removal Efficiency vs.Tools Used

27-32

0PART 11 Test/Cycle & Metrics; Manager

LDEVELOMfET LHIT COST --

26Y ilKreX: F r r, -i4. ~

*7

Ip

C' I
F N-11pi..............................

1 .- j - H1j~j ~ i'

I I" CO C. SK C

!SIZE FPRODUCT wni

I:OrData 'EiIdstrg!

Figure 27-22. Metrics Manager Development Unit Cost vs. Size of Product Showing Industry
Data

27-33

PART II TestGen Family

28. TestGen, QualGen, GrafBrowse, and the ADADL Processor

TestGen, QualGen, GrafBrowse, and the ADADL processor are part of the AISLE fam-

ily of software tools based on the Ada-based Design and Documentation Language

(ADADL). ADADL itself is fully compilable by any Ada compiler and has been selected

by the Joint Integrated Avionics Working Group (JIAWG) as the Ada program design Ian-

guage (PDL) to use for the Army's Light Helicopter (LH) and the Air Force's Advanced

Tactical Fighter (ATF) programs.

The ADADL processor provides static analysis of ADADL designs and Ada code, and

prbduces the outputs needed by TestGen, QualGen, and GrafBrowse. These other tools also

operate on both ADADL designs and Ada code. TestGen supports the review of ADADL

designs, preparation of unit test plans, and test coverage analysis. QualGen reports on qual-

ity, using a user-tailorable metrics hierarchy. GrafBrowse supports code browsing and cre-

ates invocation trees to assist in reverse engineering.

Other AISLE tools include syntax-directed and graphical editors, an automatic docu-

ment generator, a design database analyzer, a requirements analyzer and tracer, and a com-

pilation order analyzer.

28.1 Tool Overview

The AISLE tool family is marketed by Software Systems Design. It has been available

since 1984 and has over 1,000 users. The tools are available on a wide range of machines

such as VAX, VAXStation, and MicroVAX under VMS, Unix, or Ultrix; and Sun-3 and

Sun-4, HP9000-800, Apollo, DecStation, and 80386-based PC systems under MS-DOS or

Unix. Where windowing is required, the tools support X-Windows, OpenWindows, Sun-

Windows, DECwindows, Tektronix, and Hewlett-Packard windows. Graphics output is

formatted for a range of devices. These formats include Postscript, Tektronix, and Graphi-

cal Kernel System (GKS). AISLE can interface to the Teamwork, StP, and Excelerator

CASE systems to provide automatic generation of designs from requirements. At the time

of examination, TestGen prices started at $4,600, the ADADL processor at $5,000, Qual-

Gen at $4,000, and GrafBrowse at $5,500. Training and consulting services are available.

The IDA study used the ADADL processor version 5.3.E, TestGen version 2.2.2, Qual-

Gen version 1. 1, and GrafBrowse version 2.2.2 running on a Sun-4 system under Open-

28-1

TestGen Family PART II

Windows. The examinations focused on application of the tools to Ada code rather than to

ADADL designs.

28.1.1 ADADL Processor Overview

The user starts the application of these tools by submitting the code to the ADADL pro-

cessor. When the code exists in several files, these must be submitted in compilation order. 0

The processor itself consists of over 25 tools, although these are transparent to the user.

While some of these tools operate only on ADADL designs, the majority apply to either

ADADL designs and Ada code, or just to Ada code. This latter category of tools includes

the following: 0

"* A pretty printer.
"* An object highlighter to highlight use of Ada entities.

"* A program unit invocation tree generator.
"* A program unit declaration hierarchy generator. 0

"* Several cross referencers, including an object, type, subtype and derived type parent
reference cross referencers.

"• Generic instantiation report shows the location of each generic instantiation.
"* Interrupt report generator shows how interrupts are declared and where they are used.
"• With hierarchy generator shows the library units imported by each program unit.

"* Quality analyzer identifies design or code portions that do not conform to quality
guidelines, for example, objects declared but not used, and program units with an
ADADL complexity greater than some maximum limit.

"• Complexity analyzer computes the cyclomatic complexity and ADADL complexity
measures.

"* Undefined identifier/spelling checker identifies possible spelling errors or the omis-
sion of a declaration.

Report formatting can be modified, or the production of specific reports disabled, using

ADADL processor commands. Like ADADL design statements, these are given in the

form of special Ada comments. Additional special comments include the following:

"* Data dictionary definitions. Used to produce a data dictionary of all Ada program
units, types, and objects.

* Project management information. Used to define information useful to the project

manager, for example, dates of completion of design, coding, and testing activities.

The use of these special comments was not examined.

28-2

PART II TestGen Family

28.1.2 TestGen Overview

TestGen supports structural testing at three levels: branch testing, structured testing

based on McCabe's cyclomatic complexity number (also called basis path testing) [Mc-

Cabe 1976], and path testing. Using a selected technique, TestGen gives the number of nec-

essary test cases and then, for each test case, identifies the program conditions required at

each decision point to exercise the necessary program paths and shows the statements that

will be executed during that test. This information helps the user derive necessary test data

for structural testing. Since each level of testing may require a potentially very large num-

ber of test cases, TestGen provides an option that allows the user to first see how many test

cases will be required for each program unit using the different testing techniques. This in-

formation can be used to guide subsequent test case generation; it is also useful in estimat-

ing testing costs in terms of the number of test cases required for structural analysis.

Before instrumenting code :or coverage data collection, the user must establish a

TestGen library. Special utilues are provided for such library creation and maintenance.

Once an appropriate library has been created and opened, the user specifies the files that

should be instrumented. The user can further limit the extent of instrumentation by request-

ing instrumentation of selected program units instead of all the units in the file. The instru-

mentation process also requires the creation of a simple test driver. If the program under

test contains a main procedure, TestGen can automatically generate the necessary driver.
(This driver performs a loop calling the instrumented program for as long as the user wish-

es.) Otherwise, a special test driver must be manually created by the user based on a tem-

plate supplied in the documentation.

The user manually compiles and links the instrumented code and test driver. When in-
voked, the test driver queries the user for a run identification and brief description. As the

program executes on test data, the instrumentation produces a trace history that records the

order in which statements were executed. (The run identification is used in naming the gen-

erated trace file.) The Test Coverage Analyzer is then used to analyze this trace history and

report on the coverage achieved. For each program unit, a Test Coverage Summary report

identifies the number of times that unit was executed, a count of the statements not execut-

ed, and the number of branch, basis, and complete paths that were executed. Further details

on which statements were executed and how many times these were exercised are provided

by annotating a program listing. Similarly, the user can request a report that details those

paths that were not exercised. Reporting on the coverage accumulated over a series of test

runs is achieved by requesting analysis of multiple trace histories. Although this reports on

28-3

TestGen Family PART II 1

the total coverage achieved with the related test data, the Test Coverage Summary does not

distinguish between the coverage achieved on different runs.

Additional TestGen utilities are provided to compute the cyclomatic complexity for

each selected program unit, identify any unexecutable paths, and provide a control graph

of the code. A final utility, the Design Review Expert Assistant, was not examined.

28.1.3 QualGen Overview

QualGen is currently packaged as part of the ADADL processor. It provides analysis of

both design and code metrics. QualGen comes with more than two hundred primitive met- 0
rics divided into major categories such as complexity, modularity, documentation, error

handling, system independence, and clean up. These metrics are taken from the works of

quality experts such as Boehm, Halstead, and McCabe. The Software Productivity Consor-

tium style guide was another a source of quality measurement guidance used by Software

Systems Design. The user can select which of the primitive metrics will be reported on.

QualGen results are imported into Lotus 1-2-3 for further analysis and reporting. Using

Lotus, the user can create formulae that define how primitive metrics should be combined

to yield higher-level metrics such as completeness, reliability, and portability. Lotus also

supports the preparation of graphical presentation of quality results.

28.1.4 GrafBrowse Overview

Primarily intended to support reverse engineering, GrafBrowse facilitates program un-

derstanding by allowing the user to graphically view the interrelationships between Ada en-

tities. As with the ADADL processor, it operates on both an ADADL design and Ada code.

Again, however, the IDA examination focused on the application of GrafBrowse to Ada •

code.

When invoked, GrafBrowse presents the program invocation tree. Alternatively the

user can select a declaration tree or called-by tree. (The invocation and called-by trees can

be displayed in compact form, that is, with lines that potentially cross, or in a flat view with- 0

out crossing lines.) Where appropriate, the user can follow this selection with another to

select particular program units to focus on. Once a picture is displayed, a pop-up menu al-

lows the selection of a new view, browsing the related source code, or presentation of any

definition provided for the unit. Another menu allows some reformatting of the displayed

28-4

0

PART II TestGen Family

view, annotating each unit representation with its formal parameters, and printing the view.

Since many of the generated charts will be large, the print option allows the user to request

reducing a view to fit on a page, dissecting and scaling a chart for presentation on connected

sheets of paper, or printing a chart as it appears on the screen using as many sheets of paper

as necessary.

28.2 Observations

Ease of use. The tools may be invoked independently from the command line. Alterna-

tively, the AISLE user interface provides a graphical interface to their use. In either event,

all the tools are menu driven. An on-line manual is available to provide on-line help. Error

messages are terse and only minimal checking of user input is provided. No special knowl-

edge is required to use the tools. All output reports are well-structured and provide easy-to-

read information. A major strength of this tool is the clear identification of the path condi-

tions that guide the execution of particular program paths. Other than setting default values

for files names, the user interface cannot be tailored.

Documentation and user support. The documentation was helpful and included sev-

eral useful examples. Software Systems Design staff provided quick and helpful support.

Instrumentation overhead. The entire program must be analyzed by the ADADL pro-

cessor before the Unit Test Strategy Generator can be used. Subsequently, TestGen func-

tions can be invoked for the files analyzed by the ADADL processor. The size of

instrumented code is minimized by allowing the user to specify which modules in the se-

lected file should be instrumented. All selected modules are instrumented in the same fash-

ion. Instrumentation of the Ada Lexical Analyzer Generator gave a 150% increase in code

size, and an increase of 27% in the object code.

Ada restrictions. The Unit Test Strategy Generator can analyze any Ada code, but the

Test Coverage Analyzer cannot instrument tasks. Source lines with multiple statements

may be instrumented incorrectly.

Problems encountered. Execution of the fully instrumented Ada Lexical Generator

caused storage errors to be raised. It is uncertain whether this problem was due to the

amount of tracing data being generated or to a fault in the instrumentation itself. Software

Systems Design are investigating this problem.

28-5

TestGen Family PART II

28.3 Planned Additions

Software Systems Design is currently revising QualGen. This tool is being extracted

from the ADADL processor and being made independent of Lotus 1-2-3. It will itself gen-

erate histograms and Kiviat diagrams for presentation of metrics data and allow the user to

combine metrics into composite quality measures. The new version will also provide for

trend analysis of metrics data.

A new tool, called BugFinder, will examine program paths to look for potentially erro-

neous conditions, for example, a path in which the output is not set. This tool is expected

to become available in April 1993.

28.4 Sample Outputs

Figures 28-1 through 28-29 provide sample outputs from the ADADL processor,

TestGen, QualGen, and GrafBrowse.

28-6

PART II TestGen Family

[J111]] [1111 C LI C] C] LI H] 1(1 D C] 111] [I] H
LI (I] LI [LI[[1(1(1[1I (1(1111 00M)1

[] 1 ADADL PROCESSORSlI CI [] []

Ci] V ZVERSION 5.3.E C[
[IC) SERIAL NUMBER-: LOAN-IDA []
LI I C][C]

[C] []AUTHORIZED USER] CI
LI C] Software Systems Design [] []
[I[] (I][

I) [IC] C] C[] [C] [] H[IC] C]] [I] C][]t)1][] [IC I](L [I] [IC 1] [I[][](1(] CI [LIE] [IC] []

LIPS PAGE 4

83 function Llfind(Item: Llstringu; Which: Llstyle) return Integer &
is

-- Find item in symbol table -- return index or 0 if not found.

-- Assumes symbol table im sorted in ascending order.
04 Low, Midpoint, High: Integer;
8S begin

* *

*ADA CODS FOLLOWS

.........

96 Low :- 1;
87 High :u Llteblesize + 1;
:8 wi Low /- High lM
09 Midpoint := (Nligh + Lov) / 2;
90 I if Item - Llsymboltable(Midpoint)..Koy t
91 1 High :a Midpoint;
92 I Nei Item - LLsymboltable(Midpoint).Key then
93 1 I if Llsymboltable(Midpoint).Kind a Which then
94 < -------------- return(Midpoint);

96 < ------------. rurn(0 a;
97 1edif
9I 2a1 - - IT LLSIOLTABLEMIDPOI1T) .XY
99 1 Low :n Midpoint + 1;

100 end if;

101 en M
102 .. turn(0); i- item is not in table
103 end Lifind;
104
105

Figure 28-1. ADADL Listing

28-7

TestGen Family PART 11

FAGS 42
PROGRAM MWIT CROSS REFfl4CE RZPORT

DEC/IS? LOCATION OF DECLARATION OR PrBEZIC
PAGZ NO. LINE NO. UICLOSING PROGRAM UNIT

Advance <(Procedure specification))
declaration 15 249 Package LLTokena

Dujidright ((Procedure))
declaration 19 302 Procedure Readgrea
code ref 21 394

Buildselect ((Procedure))
declaration 21 358 Procedure Readgraa
code ref 21 395

close ((Procedure specification.))
declaration ** LISRAY"T Package Teztjlo
code ref 22 403 Procedure Readgran

Lifind ((Function - Returns Integer))
declaration 4 83 Procedure L1..Ccmpilo

fcode ref 13 215 Function HakeToken
code ref 23 217
code ref 13 219
cods, ref 13 222
code ref 13 224
code ref 13 227
code ref 29 563 Procedure Par&e
code ref 29 565

Limain ((Procedure.))
declaration 17 269 Procedure L1_conpile
code ref 30 613

Lineittoken ((Procedure))
declaration 3 79 Procedure Ll..Compile
code ref 7 136 Procedure Liskiptoken
Dode ref 9 163 Procedure Llskipboth
code ref 29 534 Procedure Synchronize
code ref 29 SOS Procedure Parese
code ref 30 573
declaration 16255 Procedure Ll_Conpile

Figure 28-2. ADADL Program Unit Cross Reference Report

28-8

PART II TestGen Family

PAGE 47
OBJECT CROSS RZFERENCZ REPORT

DEC/RZ? LOCATXON Or DECLAuTZOu OR RzFERzwCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Attribute ((Object))

declared as -) Llattribute
declaration 12 196 Function MakeToken

aot code ref 13 233
set code ref 13 235
cot aod. ref 14 237
set ood. ref 14 239
set code ref 14 241
use Code ref 14 243

Axiom ((Object),)
declared as -) Integer

declaration 17 292 Procedure irmain
parameter aode ref 21 387 Procedure Readgrais

use code ref 29 561 Procedure Parse

Caseindex ((In Parameter))
declared as -) in Integer

declaration 16 266 Procedure Lltakeaction

Ch (<Object))
declared as -) Character

declaration 18 298 Procedure Readyram
parameter oode ref 19 311 Procedure Buildright

use code ref 19 312
parameter code ref 21 377 Procedure Ieadgras

use code ref 21 379

Childocunt ((Objectý)
declared as - intoeger

declaration 19 303 Procedure Buildright
net code ref 19 307
set code ref 19 314
use code ref 19 314
use code ref 19 315
cat code ref 19 321
use code ref 19 321
Use oods, ref 19 3;22
not code Pef 19 326
use code ref 19 326

use oode ref 29 327

Cr (<Object>)
declar'ed as -constant character •-CR

dealrat~n we LXMMIUy we Package kUo:I.i.
use 00od re 12 185 Pr'ocedure &

Get.Character

Figure 28-3. ADADL Object Cross Reference Report

28-9

TestGen Family PART II

PAGE 58
TYPE CROSS REFERENCE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PACE NO. LINE NO. ENCLOSING PROGRAM UNIT

Boolean ((Type))

declared as -) (Palme, True)
declaration 'C LIBRARY ** Package Standard
code dec 3 60 Procedure L1 Cc-pile
code dec 3 68
code dec 3 659
code dec 11 178 Procedure &

GetCharaoter
code dec 11 178
code dec 15 248 Procedure a

cpecification Advance
code dec 15 248

cod* dec 17 272 Procedure Linain

Character (<Type))
declared as -) CCC m CCC

declaration C' LIBRARY we Package Standard
code ref 6 123 Procedure Llprttoken
code doe 11 170 Procedure &

GetCharacter
code dec 18 298 Procedure Readgraa

FileType <(Type)
declared as -) limited private

declaration 'C LIBRARY CC Package TertIo
code dec 13 299 Procedure Readgran

integer (<Type))
declared as -> (Izplqment&tlondefiaed)

declaration CC LIBRARY *e Package Standard
code doe 2 35 Procedure -l_Compile
code dec 2 36
code dec 3 52
code dec 3 53
code dec 3 54
code dec 3 56
code deo 3 61
code dec 3 62
codedc 3 70
code dec 3 71
code dec 4 83 Function Llf lad
code dec 4 94
code dec 12 195 Funaction lakeToken
code dec 16 266 Procedure Lltakeaction
code dec 17 275 Procedure Llimain
code dec 17 276
code dec 17 280

Figure 28-4. ADADL Type Cross Reference Report

28-10

PART II TestGen Family

DEC3LARATIOTR
PAGE 63

PAGE NO. LINE NO.

1 24 Procedure L1 Conpile
3 79 procedure apecification LUnenttoken
4 83 Function Lifind
5 106 Procedure Uprtstrnng

6 117 Procedure Lprttoken
7 128 Procedure Liskiptoken
8 140 Procedure Llkipnodo
9 153 Procedure L.,kipboth

10 167 Procedure L1fata.1
11 178 Procedure Get Character
12 193 Function NakeToken
13 198 1 Function CvtString
15 247 Package Ll.Tokens
15 249 j Procedure specification Advance
15 252 Package body LI Tokens
16 255 Procedure lnexttoken
16 266 Procedure LUtakeaction
17 269 IProcedure LU•ain
19 297 Procedure Readgran
19 302 Procedure Du-ldright
21 358 I Procedure Buildselect

23 407 Procedure Pares
24 412 Procedure rasae
24 428 Procedure specification Teastsynch
25 431 Procedure Mcpa•d

26 436 1 Function Natch
28 489 Procedure TestsynOh

29 490 1 Procedure Synchronize

Figure 28-5. ADADL Declaration Tree

28-11

TestGen Family PART II

PAGE 64
InVOCATION TREE

PAGE NO. LINE NO.

1 24 Procedure Li Compile
17 269 Procedure Lliaan
is 297 1 Procedure Readgra•

wt LIBRA" Procedure specification Open
" LIBRARY Procedure specification Get
't LIBRARY P Procedure specification Skip__Line

19 302 1 1 Procedure Buildright
* LIBRARY 0 IProcedure speoification Get

LIBRARY Pr o I P Jcedure* specification Put
CC LIBRARY F' Function Specification &dOfLine
** LIBRARY P' I J procedure specification Skipr.in.

" LIBRARY ' Procedure specification PutLine•
21 358 1 1 Procedure Buildselect

" LIBRARY C' l€lProcedure specification Get
CC LIBRARY Procedure specification SkipLine
CC LIBRARY Procedure specification Close

23 407 1 Procedure Parse
4 83 1 1 runction Llfind

16 255 1 1 Procedure Llnexttcken
16 266 1 1 Procedure T-itakeaction
28 489 1 1 Procedure Testaynch
10 167 1 1 1 Procedure Llf&tAl

t LIBRARY C Procedure specification Put
6 117 Procedure Llprttoken
5 106 I Procedure Llprtutring

00 LIBRARY t I Procedure specification Put
LIBRARY , t Procedure specification Put

CC LIBRARY ew I procedure specification Putjinea
28 490 1 1 1 I Procedure Synchronie

LIBRA" Procedlure specification Put

6 117 Procedure Llprttoken
5 106 I Procedure Llprtstring
LIBRARY It I I Procedure specification Put

• LIBRARY Procedure specification Put
5 106 Procedure Lapzrttring

• LIBRARY * procedure specification Put
'LIBRARY CCIIIProcedure specification PutLine
16 266 Procedure Litakoaction
16 255 Procedure lanexttoken
25 431 procedure RzPWA
26 436 Ihunction atbh

* LIBRARY Procedure specification PutLine
10 167 Procedure LLfataL

to LIBRARY Procedure specification Put
6 117 Procedure Llprttoken

5 106 I T ItI I I Procedur tlprtstring
CLIBRAYe I Procedure specification Put

Figure 28-6. ADADM Invocation Tree

28-12

PART II TestGen Family

PAGE 67
WITH HIERARCHY

PAGE NO. LINE NO.

1 24 Procedure LlCompile

" LIBRARY " I Package L1 Declarations
e0 LIBRARY " I Instantiated Package Inteq rTezt_Io

" LIBRARY * I Package Text_Io

PAGE 68
INTERRUPT CROSS REFE REN CE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

NO INTERRUPTS TO REFERENCE

PAGE 69
GENERIC INSTANTIATION REPORT

LOCATION OF DECLARATION OR INSTANTIATION
PACE NO. LINE NO. ZNCLOSING/INSTANTIATED UNIT

NO GENERICS TO REPORT
PAGE 70

Figure 28-7. ADADL Additional Cross Reference Reports

28-13

TestGen Family PART If

EXCEPTION CROSS REFERENCE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

ParsingError < (Exception))
*' No Dictionary Definition Given "

declaration 2 26 Procedure LLCcmpile

raised code ref 10 174 Procedure Llfatal
raised code ref 19 334 Procedure Buildright
raised code ref 20 352

raised code ref 29 532 Procedure Synchronize

PAGE 71
PRAGMA REPORT

LOCATION OF REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

NO PRAGQAS USED

PAGE 72
PROGRAM UNIT RZKANES REPORT

LOCATION OF RENAMING DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM LNIT

NO PROGRAM UNIT RENAMES TO REMORT

Figure 28-7 continued: ADADL Additional Cross Reference Reports

28-14

PART II TestGen Family

PAGE 73
COMPLEXITY SUMMARY REPORT

No Cabe ADADL
COMPLEXITY COMPLEXITY

code design code design Line no Program Unit Name

10 1 13 1 302 Buildright Procedure
-**- WARNING: the code complexity measure for this module is above the &

maximum level 10
2 1 2 1 358 Buildselect Procedure
3 1 3 1 198 Cvt_String Function
3 1 3 1 412 Erase Procedure
7 1 11 1 431 Expand Procedure

" WARNING: the code complexity measure for this module is above the £
maximum level 10

3 1 3 1 178 Get Character Procedure
1 1 1 1 24 Ll Compile Procedure
1 1 1 1 252 Ll Tokens Package body
1 1 1 1 167 Llfatal Procedure
5 1 6 1 83 Llfind Function
2 1 1 1 269 Limain Procedure
2 1 2 1 255 Llnexttoken Procedure
3 1 3 1 106 Llprtstring Procedure
2 1 2 1 117 Llprttoken Procedure
1 1 1 1 153 Llskipboth Procedure
1 1 1 1 140 Llskipnode Procedure
1 1 1 1 128 Llskiptoken Procedure
1 1 1 1 266 Lltakeaction Procedure

11 1 11 1 193 Make-Token Function
"" WARNING: the code complexity measure for this module in above the &

maximum level 10
4 1 5 1 436 Match Function

11 1 13 1 407 Parse Procedure
" WARNING: the code complexity measure for this module in above the &
maximum level 10

6 1 6 1 297 Readgram Procedure
10 1 16 1 490 Synchronize Procedure

*"' WARNING, s the code complexity measure for this module in above the &
maximum level 10

3 1 3 1 489 Testsynch Procedure

Figure 28-8. ADADL Complexity Summary Report

28-15

TestGen Family PART II

PAGE 74
PROGRAM UNIT ID REPORT

PROGRAM UNIT ID PROGRAM UNIT OR CONFIGURATION ITEM

NO PROGRAM UNITS WITH PROGRAM UNIT IDS

Figure 28-9. ADADL Program Unit ID Report

PAGE 75
REPORT ON OBJECTS DECLARED BUT NOT USED

DEC LOCATION OF DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Caseindex ((In Parameter)>
declared as -> in Integer

declaration 16 266 Procedure Lltakeaction

More ((In Parameter))
deolared as -> in Boolean - True

declaration 11 178 Procedure 6

Get-Character

Tableindex ((Object))
declared am -> Integer

declaration 19 304 Procedure Buildright

Figure 28-10. ADADL Objes Declared bu Not Used Report

PAGE 76
REPORT ON TYPES DECLARED BUT NOT USED

DEC LOCATION OF DECLARATION

PAGE NO. LINE NO. EICLOSING PROGRAM UNIT

NOTHING TO REPORT

Figure 28-11. ADADL Types Declared But Not Used Report

28-16

PART II TestGen Family

PAGE 77
REPORT ON PROGRAM UNITS DECLARED BUT NOT USED

DEC LOCATION OF DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Advance <<Procedure specification)>
declaration 15 248 Package LI Tokens

Get Character (<Procedure)>
declaration 11 178 Procedure LlCompile

LlCompile <<Procedure)>
declaration 1 24

LlTokens <(Package body>)
declaration 15 247 Procedure LlCompile
declaration 15 252 Procedure Li Compile

Ll.Tokens <<Package>)

declaration 15 247 Procedure Li Compile

Llskipboth <<Procedure)>
declaration 9 153 Procedure LlCompile

Llskipnode <<Procedure>)
declaration 8 140 Procedure Ll_Copile

Llskiptoken <<Procedure>)
declaration 7 128 Procedure LI Compile

Make-_Token (<Function>>
declaration 12 193 Procedure Ll_Ccopile

Figure 28-12. ADADL Program Units Declared But Not Used Report

28-17

TestGen Family PART II

REPORT ON PROGRAM UNITS WITH HIGH COMPLEXITY METRICS PAGE 102

*INE NO DESIGN COMPLEXITY CODE COMPLEXITY PROGRAM UNIT NAME

302 13 Buildright (<(
Procedure >)

431 11 Expand <(&
Procedure))

19'% 11 Make Token < <
Function >>

407 13 Parse (< Procedure a

490 16 Synchronize C(a
Procedure >)

Figure 28-13. ADADL Program Units with High Complexity Metrics Report

PAGE 103

ERROR CROSS REFERENCE REPORT

PAGE NO. LINE NO. ERROR MESSAGE

73 104 ***tt WARNING: Code complexity measure a
for a module in above the maximum level.

73 104 ***** WARNING: Code complexity meamure a
for a module is above the wmaimum level.

73 104 ***** WARNING: Code complexity measure &
for a module is above the maximum level.

73 104 ***** WARNING: Code complexity measure a
for a module is above the maximum level.

73 104 ***** WARNING: Code complexity measure &
for a module is above the maximum level.

Figure 28-14. ADADL Error Cross Reference Report

28-18

PART II TestGen Family

* Testing all paths of Subprogram: Llfind

Test conditions case 1 of 4 for subprogram: Llfind

Test conditions required for test case 1 are:

90: Set (Item < Llsymboltable(Midpoint).Key) to False
92: Set (Item - Llsymboltable(Midpoint).Key) to False

Statements to be executed during test case I axe:

83: Procedure Llfind is
85: Begin
86: Low : 1;
87: High : Lltablesize + 1;
89: While Low /- High loop
89: Midpoint :- (High + Low) / 2;
90: If Item < Llsymboltable(Midpoint).Key then

"t Condition is False
92: Elsif Item - Llsymboltable(Midpoint).Koy

"*** Condition is False
98: Else
99: Low :- Midpoint + 1;
100: End if -- for 90
101: End Loop
*** Exit loop at 88 when (Low /- High) Is false.
102: Return (0);
103: End

Test conditions case 2 of 4 for subprogram: Llfind

Test conditions required for test case 2 are,

90: Set (Item < Lloymboltable(Midpoint).Key) to False
92: Set (Item - Llsymboltable(Midpoint).Key) to True
93: Set (Llsymboltable(Midpoint).Kind - Which) to False

Statements to be executed during test case 2 ares

83: Procedure Llfind is
85: Begin
86: Low : 1;
87: High :- Lltablesize + 1;
88: While Low /- High loop
89, Midpoint : (High + Low) / 2;
90: If Item < Llsyaboltable(Midpoint).Key then

*** Condition is False
92: Elsif Item - Llsymboltable(Midpoint).Key

*** Condition is True
93: If Llaymboltable(Midpoint).Kind - Which then

*** Condition is False
95, Else

Figure 28-15. TestGen Test Conditions for Path Testing of LLFIND

28-19

TestGen Family PART 11

96: Return (0)
103: End

Test conditions case 3 of 4 for subprogram: Lifind

Test conditionu required for test caue 3 are:

90: Set (Item < Llsymboltable(kMidpoint).Key) to False0
92: Set (Item - Llaymboltable(Midpoint).Key) to True
93: Set (Lluynboltable(1Midpoint).Kind - which) to True

Statements to be executed during test case 3 are:

83: Procedure Lifind iu
85: Begin
86: Low :1;

87: High :-Litabicuize + 1;
88: While Low /-High loop
89: midpoint ,-(High + Low) / 2;
90: If Item C Llsymboltable(Midpoint).Key then

*** Condition is False
92: Elsif Item - Llsyaboltable(Midpoint).Key

*** Condition is True
93: If Llsyxkboltable(Midpoint).Kind - Which -then

*** Condition is True
94: Return (Midpoint)
103: End

Test conditions came 4 of 4 for subprogram: Llfind

Test conditions required for text case 4 are:a

90: Set (Item (Llsymboltable(Midpoint).Key) to True

Statements to be executed during test case 4 are-

83: Procedure Llfind is
85: Begin
861 Low a-1;
87: High aLitablesize + 1;
88: 'While Low /-High loop
89: Midpoint a-(High +.Low) / 2;
90: if Item C Llsymboltable(Midpoint) .Key then

** Condition is True
91: High :- Midpoint:
100: End if - for 90
101: End Loop

*** Exit loop at 88 when (Low /- High) is false.
102: Return (0)

103: End

Figure 28-15 continued: TestGen Test Conditions for Path Testing of LIFIND

28-20

PART II TestGen Family

Teot Case Effort Report

page 1 of 2

Nuaber of Test Cases Required for
Module Name Basis Branch Full Path

Testing Testing Testing
7•- --- ---- - N line--------------- .n ft - -- - --

LJ.Compile I 1L 3.
Llfind 4 4 4
Llprtstring 1 2 2
Llprttoken 2 2 2

Llskiptoken l 1 1
Llskipnode I I1
Lskipboth I 1 1
Llfatal I 1 1
GetCharacter 3 3 3
Make.Token .. 1 7 335

CvttString 2 2 2
.I rnexttoken 2 2 2

Llmain I I1

Test Case Effort Report

page 2 of 2

Number of Test Cases Required for
Module Name Basas Branch Full Path

Testing Testing Tooting

Readgram, 2 2 12
B ulidright 9 7 122
b uildselect i i I1
Parse 10 e 132
Erase 2 2 12
Ixpand 6 4 110
Match 3 3 13
Testsynch 2 2 12
Synchronise 6 4 110

Figure 28-16. TestGen Test Case Effort Report

28-21

TestGen Family PART II

Unreachable Statement Report for module: Ll Compile
All statements can be reached.

Unreachable Statement Report for module: Llflnd
97: End if -- for 93
There were 1 statements that could not be reached

Unreachable Statement Report for module: Llprtstring
All statements can be reached.

Unreachable Statement Report for module: Llprttoken
All statements can be reached.

Unreachable Statement Report for modules Llskiptoken
All statements can be reached.

Unreachable Statement Report for module: Llskipnode
All statements can be reached.

Unreachable Statement Report for module: Llskipboth
All statements can be reached.

Unreachable Statement Report for module: Llfatal
All statements can be reached.

Unreachable Statement Report for module: GetCharacter
All statements can be reached.

Unreachable Statement Report for module: MakeToken
All statements can be reached.

Unreachable Statement Report for module: CvtString
All statements can be reached.

Unreachable Statement Report for nodule: Llnezttoken
All statements can be reached.

Unreachable Statement Report for module: Linmain
All statements can be reached.

Unreachable Statement Report for module: Readgram
All statements can be reached.

Unreachable Statement Report for module: Buildright
All statements can be reached.

Unreachable Statement Report for module: Buildseleot
All statements can be reached.

Unreachable Statement Report for module: Parse
All statements can be reached.

Figure 28-17. TestGen Unreachable Statement Report for LLCOMPILE

28-22

PART II TestGen Family

McCabe Cyclomatic Complexity Report

page 1 of 2
Module Name Design Code

SLlCompile I i
LIfind i 5
Llprtstring I 3
Llprttoken 1 2
Llskiptoken Ii
Llmkipnode i 1
Llskipboth I 1
Lifatal 3 .
Get_Character I 3
MakeToken 1 11
Cvt String i 3
Llnexttoken 1 2
Llain l i
Readgram 1 6
Buildright 1 10

McCabe Cyclomatic Complexity Report

page 2 of 2
module Name Design Code

Buildselect I 2
Parse I I
Erase 1. 3
IExpand I 7
Match Ii 4
Testsynoh 1 3
Synchronize I 9

Figure 28-18. TestGen McCabe Complexity Report for LLCOMPILE

28-23

TestGen Family PART 11

Test Coverage Summary0
Page 1 of 3

Module Calls Stats Complete Branch Basis
name Not Path Path path

Done

ILlCompile I 1 0 1 1/1 (100%)l 1/1 (1000)1 1/1 (100%)l
ILifind 19 1~ 4 1 3/4 (75%)l 3/4 (750)1 3/4 (750)10
ILlprtstring I 0 1 10 1 0/2 (0%)l 0/2 (0%)1 0/1 (01)j
lLlprttoken 0 1l 10 1 0/2 (0%)l 0/2 (0%)l 0/2 (01)1
ILiskiptoken 1 0 1 11 1 0/1 (0%)1 0/1 C 01W 0/1 C 01)
ILlskipnode I 0 1 12 1 0/1 (01)j 0/1 (01)1 0/1 C 01)1
ILlukipboth I 0 113 1 0/1 (0%)l 0/1 (01)1 0/1 (00)1
ILlfatal 0 01 10 1 0/1 (0)W 0/1 (01W 0/1 (0)W
IGet Character 1 865 1 1 1 3/3 (100%)l 3/3 (1000)1 3/3 (2000)1
IMake-Token 1 133 1 9 1 5/35 (14%)l 5/7 (710)1 1/11 (9%)l

Test Coverage Summary
Page 2 of 3

module Calls Stats Couplets Branch Basin
Name Not Path Path path

Done

ICvtString 1 133 1 1 1 2/2 (100%)l 2/2 (100%)l 2/2 (100%)l
ILinexttoken 1 134 1 1 1 2/2 (100%)l 2/2 (100%)l 2/2 (100%)l
ILimain I 1 I 1 I1/1 (100%)l 1/1 (100%)l 1/1 (100%)1
I eadgrau 1 1 I1/2 (50%)(2/2 (10001) 1/2 C 5091)0
Iluildright I 64 1 7 1 8/22 (36%)l 5/7 (710)1 3/9 (33%)l
1 Buildnelect 1 64 1 1 1 1/1 (100%)l 1/1 (1009)1 1/1 (1000)1
I Parse I 1 1 12 1 5/32 (16%)l 2/6 (25%)l 1/10 C 101)1
z rase 1 396 1 1 1 2/2 (100%)l 2/2 (100%)l 2/2 (1000)1
lXzpand 1I254 1 5I 5/10 (50%)l 2/4 (50%)1 2/6 (33%)1
1match 1254 I 4 1 1/3 (33%)1 1/3 (330)1 1/3 (33%)l

Test Coverage Summary
Page 3 of 3

Module Calls Stats Complete Branch Basis
Name Not path Path Path

Done

Tostsynch I 1 121 0/2 C 01)1 0/2 (0%)l 0/2 (0%)l
ISynchronize I 0 I44 I0/10 C 0%)l 0/4 (0%)l 0/6 C 0%)l
ILlTokens I 01 31 0/1 (0%)j 0/1 (01)j 0/1 (00)1
ICurrentSymbol. 1 133 I 1 I1/1 (100%)l 1/1 (1000)1 1/1 (100%)1
IAdvance 1 134 I 7 I5/8 (624)1 618 (750)1 5/6 C 620)1
ISoanj.attern I257 I129 I16/565 (3%)l 12/40 (30%)l 1/50 (2%)l
ICharAdvance 760 1 3 I1/3 (330)1 1/3 (330)1 .1/3 (330)1
LookAhead I391 2 1/3 C 33%)l 1/3 (33%)1 1/3 (33%)l
LItakeaction I230 I77 I32/68 (470)1 32/68 (4701), 32/69 (4701)

Figure 28-19. TestGen Test Coverage Summary using testil.ex

28-24

PART II TestGen Family

TestGen Sub-Program Invocation Count Report

Module Name Invocations

Ll Compile 1
Llfind 198
Llprttring 0
Llprttoken 0

ULskiptoken 0
Llskipnode 0
ILlkipboth 0

Lifatal 0

Get.Character 165

NakeToken 133

Cvt-String 133

Llnexttoken 134

Li3Ain 1

Readgram 1

SBuildright 64
Buildselect 64
Parse I
mr-aue 398

Expand 254

Match 254

•Tstaynch 0
Synchronize 0

ILl.Tokens 0

CurrentSymbol 133

Advance 134

Soan-Pattern 257

Char Advance 780

LookAhead 39
Litakeaction 230

Figure 28-20. TestGen Sub-Program Invocation Count Report using testi.lex

28-25

TestGen Family PART II

Statement Execution Report for Module: Advance

procedure ADVANCE(EOS: out BOOLEAN,
NEXT: out LLTOKZJ;

134: MORE: in BOOLEAN :- TRUE) is

134: begin
134: EOS :- FALSE:
134: loop
257: SCANPATTERN;
257: case CUR PATTERN in

1: when ENE_1OF_INPUT -)

1. NOS :- TRUE:
1: return,

45: when EqD OTLINE -) null;
9: when CharacterLiteral m)
9: NEXT :- MAKETOKN(CHAR, CURRENTSYMBOL, CURLINENUN);
9:. return,

78: when Comment I WhiteSpace -) null;
64: when Delimiter I Number I Special Symbol-7
641 NEXT :- MAKETOKEN(LIT, CURRENT_SYJBOL, CUR_LINENUK);
64: return,
60: when Identifier -,
60: NEXT :- MAKETOKEN(IDENT, CURRENT S7MBOL, CUR LINE NUN);
60: return:

0: when StringXiteral -)
0: NEXT :- MAKRETOKEN(STR, CURRTSYiMBOL, CUILINE_NUMN);
01 return;

0: when others -)
0: NEXT ,- MAKE TOKEN(LIT, CURRENTSYMBOL, CUR LINE NUM);
0: return;

123: end case:
123: end loop:
257: end ADVANCE;

Figure 28-21. TestGen Statement Executlon Report using testl.lex for ADVANCE

28-26

PART II TestGen Family

Branch Path Coverage Analysis for Module: Advance

There were 2 paths not tested:

* Testing all statements of Subprogram: Advance

Test conditions case I of 2 for subprogram: Advance

Test conditions required for test case 1 are:

51: Set (CurPattern) to String Literal

Statements to be executed during test case 1 are:

46: Procedure Advance is
47: Begin
48: too :- False;
49: Loop
50: Scan-Pattern;
51: Case Cur-Pattern is

*** Case variable is String_Literal
66: When StringLiteral -)

67: Next T- MakeToken(Str, Current• Symbol, Cur LineNum);
68: Return
74: End

Test conditions case 2 of 2 for subprogram: Advance

Test conditions required for test case 2 are:

51: Set (CurPattern) to others

Statements to be executed during test case 2 are:

46: Procedure Advance is

47: Begin

48: tos t- false;
491 Loop
50: Scan Pattern;
51: Case Cur- pattern is

*** Case variable is others

69: When others -)
70: Next :-Make-Token(Lit, Current_Symbol, CurLineNum);
71: Return :
74: End

2 of 8 paths were not tested.
This module is 75 percent tested.

Figure 28-22. TestGen Branch Path Coverage Analysis using tettl.iex for ADVANCE

28-27

TestGen Family PART II

Struotured Testing Path Coverage Analysis for Module: Advance

There were 3 paths not tested

* Testing a Structured path selection of Subprogram: Advance

Test conditions case 1 of 3 for subprogram: Advance

Test conditions required for test case 1 are:

51: Set (Cur-Pattern) to End-OfInput

Statements to be executed during test case 1 are:

46: Procedure Advance is
47: Begin
48: Eos :- False;
49: Loop
50: Scan Pattern;
51: Case Cur_Pattern is

*** Case variable is End-OfInput
52: When EndOfInput -)
53: Eos :- True,
54: Return ;
74: End

Test conditions case 2 of 3 for subprogram: Advance

Test condition. required for test case 2 are:

51: Set (CurPattern) to String.iteral

Statements to be executed during test case 2 aree:

46: Procedure Advance is
47: Begin
48: Eos :- False;
49: Loop
50: Scan Pattern;
51: Case Cur-Pattern is

*** Case variable is String_-iteral
66: When StringLiteral -)
67: Next :-MakeToken(Str, Current-Symbol, CurLineRum);
6B: Return
74: End

Figure 28-23. TestGen Structured Testin Path Coverage Analysis using testi.lex for AD-VANCE

28-28

PART I1 TestGen Family

Test conditions required for test case 3 are:

51: Set (Cur-Pattern) to others

Statements to be executed during test case 3 are:

46: Procedure Advance is

47: Begin
48t Bos :t False;

49: Loop
50: ScanPatternj
51t Case CurPattern is

s** Case variable is others
69: When others -)

70: Next: - MakeToken(Lit, Current Symbol, Cur.Line Num);
71: Return ;

74: End ,

3 of 8 paths were not tested.
This module is 62 percent tested.

Figure 28-23 continued: TestGen Structured Testing Path Coverage Analysis using testi.lex
for ADVANCE

28-29

TestGen Family PART II 0

Test Coverage Summary 0
Page 1 of 3

Module Calls Stats Complete Branch Basis
Name Not Path Path Path

Done
+------------------------ ---- -----------------------------

LiCospile 2 1 0 1 1/1 (100%)l 1/1 (100%)l 1/1 (100%)l
ILlfind 1 510 1 2 1 4/4 (100t)l 4/4 (1000)1 4/4 (1000)1 6
Llprtstring 0 1 10 1 0/2 (0%)l 0/2 (0%)l 0/1 (O0)j
Llprttoken 0 101 0/2 (0%)l 0/2 (01)1 0/2 (0t)j
Llskiptoken 0 11 1 0/1 (0%)l 0/1 (01)1 0/1 (01)1
Llskipnode 0 1 12 1 0/1 (0%)l 0/1 (0%)l 0/1 (0%)l
Llskipboth 0 1 13 1 0/1 (Ot)1 0/1 (0%)l 0/1 (0%)l
Llfatal 0 1 10 1 0/1 (0%)1 0/1 (0%)1 0/1 (0)1
GetCharacter 12250 1 1 1 3/3 (lO0)1 3/3 (100%)l 3/3 (100%)l
MakeToken 1 353 1 5 1 6/35 (17t)1 6/7 (861)1 1/11 (9%)l

Teat Coverage Summary
Page 2 of 3

Module Calls Stats Complete Branch Basis
Name Not Path Path Path

Done

CvtString 1 353 1 1 1 2/2 (100%)l 2/2 (100%)l 2/2 (100%)1
Llnexttoken 1 355 1 1 1 2/2 (100%)l 2/2 (100%)l 2/2 (100%)1

I Llanin 1 2 1 1 1 1/1 (100%)l 1/1 (1004)1 1/1 (1000)1
Readgram 1 2 1 1 1 1/2 (50%)l 2/2 (100%)1 1/2 (50%)1
Buildright 1 128 1 7 1 8/22 (36%)1 5/7 (71%)1 3/9 (331)1
Buildselect 1 128 1 1 .1/1 (100%)l 1/1 (100%)l 1/1 (1000)1
Parse 1 2 1 12 1 5/32 (16%)l 2/8 (25%)l 1/10 (10%)l

I Erase 11105 1 1 1 2/2 (100%)l 2/2 (1001)1 2/2 (1000)1
Expand 715 5 1 5/10 (50%)l 2/4 (500)1 2/6 (330)1
Match 715 4 1 1/3 (33%)l 1/3 (33t)1 1/3 (33%)1

Test Coverage Simary
Page 3 of 3

module Calls Stats Complete Branch Basis
Name Not Path Path Path

Done

Testsynch 9 12 1 0/2 (0t)1 0/2 (O0)j 0/2 (0%)1
Synchronise 0 44 1 0/10 (01)1 0/4 (01)j 0/6 (0l)j
LX-Tokens 0 31 0/1 (01)1 0/1 (0%)l 0/1 (00)1
Current.SBybol 1 353 1 1/1 (1000)1 1/1 (100%)l 1/1 (1001)1
Advance 1 355 4 1 5/8 (621)1 7/8 (88t)1 5/8 (620)1
ScanPattern 1 712 106 1 17/585 (3%)l 13/40 (32%)l 1/50 (20)1
CharAdvanoe 12018 1 3 1 1/3 (33%)l 1/3 (33%)l 1/3 (330)1

1 Look.Ahead 1 123 1 2 1 1/3 (33%)1 1/3 (33%)1 2/3 (33%)1
1 Litakeaction 659 1 69 1 35/68 (510)1 35/68 (510)1 35/68 (510)1

Figure 28-24. TestGen Test Coverage Summary using testl.lex & sampie.lex

28-30

PART 11 TestGen Family

HO."~0
t.-~~ Ag% S00ý4r!0 Iowa,

10991-0 z4 A
e1%OO%4% C0%

Z OR vi C) 4 CZ 6 in- 4% 6%

f1-00000-

ýIMCM14ý.'I
-IN - '

OR 00

W1 *1 AV

Fiur 2-2. ua~e Rpot xcrp

C" C;, 28-3.

Test~en Family PART 11

910

AIM.

- i qW a'S Ig 1'n -9!Q . 4 11 A X;Qi4

> C-2" ;---

in'V~-.~ HUM ~4 'in-.
ORWIVAU 'ttýt* "A

V.'

'
Il-i uu.

WAI '1.inc1
'A~ "M-e

tm I 04 .P -- 4 &0 R@0C AI vA aA s @.t0n

CI~ v

fIWIIL!dII,

Figure 28-25 continued: QuaiGen Report Excerpt

28-32

PART 11 TestGen Family

A0 V0 v AGO%(
-ýCnc -01 0%

MMMMM4c4-P R440% 0(400V
00 000%0 1"O~%w~ 0101v

1 C;%6-
,WMMMM 0~0% M- MM

'P$, ' ;C4 ; o W. r t t ýII-

MMMMMM Mr M

ff~dvvvv V IE~t 0

," H v, M*~.4 C4

Cq C4~ % C4 -

graIN

r- w%4-P on w% vi -
ro ro ri ro 14 t'0, R r

0
. N 0f~

"Wiv r Cfl*i$3I A R 999 U 0 wTa
-~ ~~E q Us(bt~. ~0%~ ~~ -f

EHU
Fiur f82 otnud Qual 1 en ReotExep

v M MM MwfMvw2%8-33

TestGen Family PART 11

WI
r-I

rog

442
0)

aI0I

4-J

0'I U 21-6. /.qJS ia nOC0nGrp llLCOPL 0

28-34

PART II TestGen Family

*>
0)
r-4

r-I

O-t

.,4

0

0)

4--)

Figure 28-27. Grafl~rws Declaration Tree of LLCOMPILE

28-35

TestGen Family PART II

m0

P0

,4

44

00

4-)

1-I

r4-

Figure 28-28. GraBmows Fiat Callby Tres of LLFIND

28-36

0PART 11 TestGen Family

u~a~UFUS "ft3 Uxn OM NIBE) . I
- l 110 IN 4Lv t*I - rft Ass r if a*#&d

IN J.,s

&W 3W4 .ESI!)S

Figur 2829 Grfr*s Browsing,.s LLI

if U.U.Wjuamm28-37l

References

REFERENCES

* [ANSI/IEEE 19831 ANSI/IEEE Standard 829-1983. February 1983. Standard for
Software Test Documentation. Institute of Electrical and Elec-
tronics Engineers, Inc.

[ANSI/MIL 1983] ANSI/Military Standard 1815A. January 1983. Ada Program-
ming Language.

[AFSCP 1986] Air Force Systems Command Pamphlet 800-43. January 1986.
Software Management Indicators. Air Force Systems Command.

[AFSCP 1987] Air Force Systems Command Pamphlet 800-14. January 1987.
Software Quality Indicators. Air Force Systems Command.

[Boehm 1980] Boehm, B.W. 1980. Software Engineering Economics. Engle-
wood Cliffs, NJ: Prentice-Hall.

[Boehm 1988] Boehm, B.W. and P.N. Papaccio. 1988. "Understanding and
Controlling Software Cost." IEEE Transactions on Software En-
gineering, Vol. 14, No. 10, (Oct), pp. 1462-1477.

[DoD-STD-2167A] DoD Standard 2167A. 29 February 1988. Defense System Soft-
ware Development.

[DoD-STD-2168] DoD Standard 2168. 1 August 1986. Defense System Software
Quality Program.

[DoDI 1991] DoD Instruction 5000.2. 1 January 1991. Defense Acquisition
Management Policies and Procedures.

(Dunn 1984] Dunn R.H. 1984. Software Defect Removal. NY: McGraw-Hill.

[GPALS 1992a] Strategic Defense Initiative Organization. 20 February 1992.
GPALS Software Quality Program Plan (SQPP), Annex D to the
GPALS CRLCMP. SDI-S-SD-92-000005.

[GPALS 1992b] Strategic Defense Initiative Organization. 30 February 1992.
GPALS Contract Requirements Packages (CRPs) Guidelines for
Computer Resource Issues. SDI-S-SD-92-000005.

[GPALS 1992c] Strategic Defense Initiative Organization. 15 July 1992. GPALS
Software Standards. SDI-S-SD-91-000003-01.

A-I

References

[Graham 1991] Graham, D.R. 1991. "The MD Wants 100% Automated Testing:
A Case History." In Proceedings 8th International Conference
on Software Testing, 17-20 June, Washington, DC.

[Halstead 1977] Halstead, M.H. 1977. Elements of Software Science. NY: Elsevi-
er North-Holland Publishing.

[Hennell 1976] Hennell, M.A., M.R. Woodward, and D. Hedley. 1976. "On Pro-
gram Analysis." Information Processing Letters, Vol. 5, No. 5, 0
(Nov): 136-140.

[Hook 1991] Hook, A.A. et al. June 1991. Availability of Ada and C++ Com-
pilers, Tools, Education, and Training. Alexandria, VA: Institute
for Defense Analyses. IDA Paper P-2601.

[Humphrey 1987] Humphrey, W.S. and W.L. Sweet. September 1987. A Method for
Assessing the Software Engineering Capability of Contractors.
Pittsburgh, PA: Software Engineering Institute. CMU/SEI-87-
TR-23.

[IEEE 1987] IEEE Standard P1044. December 1987. Draft Standard of. A
Standard Classification for Software Errors, Faults, and Fail-
ures. Institute of Electrical and Electronics Engineers, Inc., The
Standard Classification for Software Errors, Faults, and Failures
Working Group of the Software Engineering Standards Subcom-
mittee.

[IEEE 1990] IEEE Standard 610. 10 December 1990.IEEE Standard Glossary
of Software Engineering Terminology. Institute of Electrical and
Electronics Engineers, Inc.

[IEEE 1992] IEEE Standard 1175.20 August 1992. A Trial-Use Standard Ref-
erence Model for Computing System Tool Interconnections. In-
stitute of Electrical and Electronics Engineers, Inc.

[KPMG 1992] KPMG Peat Marwick. January 1992. Software Quality Assur-
ance Survey. MA: Massachusetts Computer Software Council,
Inc.

[Korel 1991] Korel, B. and B. Sherlund. 1991. "Modification Oriented Soft-
ware Testing." In Proceedings 8th International Conference on
Testing Computer Software, June 17-20, Washington, DC,
pp. 143-152.

[Martin Marietta 1991] Martin Marietta. January 1991. Pro-90 Engineering Handbook,
Software Metrics.

A-2

References

[Martin Marietta 1992] Martin Marietta IS. 1 February 1992. Technical Report for the
Software Metrics Tutorial. NTB- 137-25-02-0 1.

[McCabe 1976] McCabe, T.J. 1976. "A Complexity Measure." IEEE: Transac-
tions on Software Engineering, Vol. 2, No. 4 (Dec), pp. 308-320.

[McCabe 19821 McCabe, T.J. December 1982. Structured Testing: A Software

Testing Methodology Using the Cyclomatic Complexity Metric.
NBS Special Publication 500-99. Gaithersburg, MD: National In-
stitute of Standards and Technology.

[Meeson 1989) Meeson, R.N. 1989. Ada Lexical Analyzer Generator User's
Guide. Alexandria, VA: Institute for Defense Analyses. IDA Pa-
per P-2109.

[Mohanty 1976] Mohanty, S.N. June 1976. Automatic Program Testing. Ph.D.
Diss., Polytechnic Institute of New York.

[Mosemann 1992] Mosemann, L.K., II. 1992. "Improving Software Quality
Through Measurement." CrossTalk: The Journal of Defense
Software Engineering, No. 36, (Sept), pp. 2-5.

[Musa 1987] Musa, J.D., A. lannino, and K. Okumoto. 1987. Software Reli-
ability Measurement, Prediction, and Application. NY:
McGraw-Hill.

[Paulk 1991] Paulk, M.C., B. Curtis, and M.B. Chrissis. August 1991. Capabil-
ity Maturity Model for Software. Pittsburgh, PA: Software Engi-
neering Institute. CMU/SEI-91-TR-24, ESD-TR-91-24.

[Price 1992a] Price, G., G.T. Daitch, D. Murdok, and E. Hidden. April 1992.
Test Preparation, Execution, and Analysis Tool Report. Hill Air
Force base, UT: U.S. Air Force Software Technology Support
Center.

(Price 1992b] Price, G., B. Ragland, D. Murdok, and E. Hidden. April 1992.
Software Test Tool Report - Source Code Static Analysis. Hill Air
Force base, UT: U.S. Air Force Software Technology Support
Center.

[RADC 19831 Rome Air Development Center. July 1983. Software Quality
Measurement for Distributed Systems. RADC-TR-83-175.

[SDIO 1992a] GPALS Computer Resources Working Group, Software Quality
Improvement and Standards Committee. January 1992. Software
Metrics Evaluation Plan for the Level 2 System Simulator.

A-3

References

[SDIO 1992b] Strategic Defense Initiative Organization. March 1992. SDIO Di-
rective No. 3405 (Revision 1). Strategic Defense Initiative Orga-
nization (SDIO) Software Policy.

[SDIO 1992c] Strategic Defense Initiative Organization. 30 March 1992. Con-
tract Requirements Packages (CRPs) Guidelines for Computer
Resource Issues. SDI-S-SD-92-000005.

[SPC 1991] Software Productivity Consortium. 1991. Ada Quality and Style:
Guidelines for Professional Programmers. NY: Van Nostrand
Reinhold.

[SQE 1990] Software Quality Engineering. December 1990. Software Mea-
sures and Practices Benchmark Study. Jacksonville, FL: Soft-
ware Quality Engineering. TR-900.

[SQE 1991] Software Quality Engineering. 1991.1990 Testing Practices Sur-
vey. Jacksonville, FL: Software Quality Engineering.

[Sittenauer 1991] Sittenauer, C., G.T. Daitch, D. Samson, D. Dyer, G. Price, and J.
Hugie. May 1991. Software Test Tool Report. Hill Air Force
base, UT: U.S. Air Force Software Technology Support Center.

[U.S. Army 1992] U.S. Army Armament Research, Development and Engineering
Center. June 1992. Software Metrics in Test & Evaluation: AMC
Guidance for Implementation of STEP Metrics. Draft.

[Youngblut 1991] Youngblut, C., B.R. Brykczynski, and R.N. Meeson. October
1991. An Examination of Selected Commercial Software Testing
Tools. Alexandria, VA: Institute for Defense Analyses. IDA Pa-
per P-2628.

[Yourdon 1990] Yourdon, E. 1990. "Object-Oriented Analysis." In Proceedings
CASE World, 20-22 March. Los Angeles, CA.

A-4

Acronyms & Abbreviations

ACRONYMS AND ABBREVIATIONS

ADADL Ada-based Design and Documentation Language

ADAMAT Ada Measurement and Analysis Tool

ADW Application Development Workbench

AFSCP Air Force Systems Command Pamphlet

AISLE Ada Integrated Software Lifecycle Environment

ANSI American National Standards Institute

APSE Ada Programming Support Environment

ASA Advanced System Analyzer

ASCII American Standard Code for Information Interchange

AT&T Atlantic Telephone and Telegraph

ATEST Ada Test and Analysis Tools

ATF Advanced Tactical Fighter

BAT Battlemap Analysis Tool

BOD Basic Operating Database

CASE Computer-aided Software Engineering

CCC Computer Command & Control Company

CCITT Consulting Committee on International Telegraphy and Telephon

CMM Capability Maturity Model

CMS Critical Metrics Set

COCOMO Constructive Cost Model

CRP Contract Requirements Package

CRWG Computer Resources Working Group

B-I

Acronyms & Abbreviations

CSCI Computer Software Component Item

CSU Computer Software Unit

CUA Common User Access

CUI Common User Interface

DoD Department of Defense

DoDI Department of Defense Instruction

DDTs Distributed Defect Tracking System

DEC Digital Equipment Corporation

GKS Graphical Kernel System

GPALS Global Protection Against Limited Strikes

HPGL Hewlett-Packard Graphics Language

IBM International Business Machines

ICC Irvine Compiler Corporation

IDA institute for Defense Analyses

IDE Interactive Development Environments

IEEE Institute for Electrical and Electronics Engineers, Inc.

IEW Information Engineering Workbench

IL Intermediate Language

ISO International Organization for Standardization

JIAWG Joint Integrated Avionics Working Group

L2SS Level 2 System Simulator

LAN Local Area Network

LCSAJ Linear Code Sequence and Jump

LDRA Liverpool Data Research Associates

LH Light Helicopter

LRM Language Reference Manual (Ada)

B-2

Acronyms & Abbreviations

MALPAS Malvem Program Analysis Suite

MCCR Mission Critical Computer Resource

MIL Military

MIS Management Information System

MOD Ministry of Defense

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NCR National Cash Register

NTDS Naval Tactical Data System

NTB National Test Bed

PC Personal Computer

PCTE Portable Common Tool Environment

PDL Program Design Language

PMM Process Maturity Model

QA Quality Assurance

QES Quality Engineering Software

QUES Quality Evaluation System

RADC Rome Air Development Center

RDDTs Remote Distributed Defect Tracking System

RTP Rex, Thompson & Partners

StP Software through Pictures

SAGE Semiautomated Ground Environment

SASET Software Architecture, Sizing Tool

SDI Strategic Defense Initiative

SDIO Strategic Defense Initiative Organization

SDL System Development Language

B-3

Acronyms & Abbreviations 0

SEI Software Engineering Institute

SES Scientific and Engineering Software

SGML Standard Generalized Markup Language

SMEP Software Metrics Evaluation Plan

SPC Software Productivity Consortium

SPCR Software Problem Change Report

SPS Software Productivity Solutions

SQA Software Quality Assurance

SQE Software Quality Engineering

SQI&S Software Quality Improvement and Standards

SQMS Software Quality Management System

SRE Software Reliability Engineering

SSD Space Systems Division

STARS Software Technology for Adaptable, Reliable Systems

START Structured Testing and Requirements Tool

STD Standard

STEP Software Test and Evaluation Panel

STSC Software Technology Support Center

TBGEN Test Bed Generator

TC Testing Comprehensiveness

TCMON Test Coverage Monitor

TCP Transmission Control Protocol

TCPOST Test Coverage Monitor Postprocessor

TDF Test Data File

TER Test Effectiveness Ratio

TST Test Support Tool

B-4

Acronyms & Abbreviations

UDP User Datagram Protocol

US United States

VDM Vienna Development Method

WIS Worldwide Military Command and Control System Information System

WWMCCS Worldwide Military Command and Control System

WR Work Request

XG&M Xinotech Guidelines, Standards, and Metrics Analyzer

B-5

Glossary

GLOSSARY

The reader is assumed to be familiar with general software-related terms and, therefore,

this glossary focuses on testing and evaluation terms. The reader is referred to the IEEE

Standard Glossary of Software Engineering Terminology [IEEE 1990] for definitions of

additional terms.

Acceptance Testing. Formal testing conducted to determine whether or not a system sat-

isfies its acceptance criteria and to enable a customer to determine whether or not to accept

the system.

Assertion. A logical expression specifying a program state that must exist or a set of con-

ditions that program variables must satisfy at a particular point during program execution;

for example, "A is positive and greater than B."

Assertion Testing. A technique which inserts assertions about a program state or the rela-

tionship between program variables into the program code. The truth of the assertions is

determined as the program executes.

Audit. (1) An independent review for the purpose of assessing compliance with software

requirements, specifications, baselines, standards, procedures, instructions, codes, and con-

tractual and licensing agreements. (2) An activity to determine through investigation the

adequacy of, and adherence to, established procedures, instructions, specifications, codes,

and standards or other applicable contractual and licensing requirements, and the effective-

ness of the implementation.

Auditing. Checking for conformance of code to prescribed programing standards and prac-

tices.

Basic Execution Time Model. A software reliability model in which the failure process is

assumed to be a nonhomogeneous Poisson process with linearly decreasing failure intensi-

ty.

Basis Paths. Program paths that have no iteration.

C-I

Glossary 0

Block. (1) In problem-oriented languages, a computer program subdivision that serves to

group related statements, delimit routines, specify storage allocation, delineate the applica-

bility of labels, or segment paths of the computer program for other purposes. (2) A group 0

of contiguous storage locations, computer program statements, records, words, character-

istics, or bits that are treated as a unit.

Bottom-up Testing. A systematic testing strategy that seeks to test those modules at the •

bottom of the invocation structure first. These modules are tested independently using test

drivers to invoke them, then modules at the next higher level that call these modules are

tested, and so on.

Boundary Value Analysis. A test data selection technique in which test data are chosen to 0

lie along boundaries of the input domain (or output range) classes, data structures, proce-

dure parameters, etc. Choices often include maximum, minimum, and trivial values or pa-

rameters.
0

Branch Testing. Testing designed to execute each outcome of each decision point in a

computer program.

Calendar Time. Chronological time, including time during which a computer may not be

running. •

Call Graph. A diagram that identifies the modules in a system or computer program and

shows which modules call one another.

Cause-Effect Graphing. A test data selection technique where the input and output do-

mains are partitioned into classes and analysis is performed to determine what effects are

caused by what inputs. A minimum set of inputs is chosen that will cover the entire effect

set.

Change Request. A document used to propose, transmit, and record changes to a specifi-

cation.

Clock Time. Elapsed time from the start to the end of program execution, including wait

time, on a running computer.

Code Auditor. An automated tool which checks for conformance to prescribed program-

ming standards and practices.

C-2

0F

Glossary

Code Inspection. See Inspection.

Code Review. A meeting at which software code is presented to project personnel, manag-

ers, users, customers, or other interested parties for comment or approval.

Comparator. A software tool which compares two computer programs, files, or sets of

data to identify commonalities or differences. Typical objects of comparison are similar

versions of source code, object code, data base files, or test results.

Complexity. The degree of complication of a system or system component, determined by

such factors as the number and intricacy of interfaces and conditional branches, the degree

of nesting, the types of data structures, and other system characteristics.

Component. One of the parts of a system. A component may be hardware or software and

may be subdivided into other components.

Concurrent Processes. Processes that may execute in parallel on multiple processors or

asynchronously on a single processor. Concurrent processes may interact with each other,

and one process may suspend execution pending receipt of information from another pro-

cess or the occurrence of an external event.

Control Flow. The sequence in which operations are performed during the execution of a

computer program.

Control Flow Knot. A control flow knot occurs when two control flow jumps cross. It is

defined as: A jump (P, Q) and another jump (A, B) give rise to a knot if (1) P lies within (A,

B) and Q lies outside, or (2) Q lies within (A, B) and P lies outside. Variations on basic knots

include down-down knots, up-down knots, and up-up knots.

Correctness. See Program Correctness.

Coverage Analyzer. A software tool which determines and assesses measures associated

with the invocation of program structural elements to determine the adequacy of a test run.

Coverage Measure. In general, a measure of the testing coverage achieved as a result of a

test, often expressed as a percentage of the number of statements, branches, or paths that

were traversed.

Cross-Referencer. (1) A computer program that provides cross-reference information on

system components. For example, programs can be cross-referenced with other programs,

C-3

Glossary 0

macros, and parameter names. This capability is useful in assessing the impact of changes

to one area or another. (2) A utility program which provides cross-reference data concern-

ing a program written in a higher level language. These utility programs analyze a source S
program and provide as output such data as follows: 1. Statement label cross-index, 2. Data

name cross-index, 3. Literal usage cross-index, 4. Inter-subroutine call cross-index, 5. Sta-

tistical counts of statement types.

Cyclomatic Complexity. A measure of program complexity derived from the control
graph of a program. The cyclomatic complexity of a program is equivalent to the number

of decision statements plus 1.

Data Flow. The sequence in which data transfer, use, and transformation are performed 0

during the execution of a computer program.

Data Flow Analysis. Consists of the graphical analysis of collections of (sequential) data

definitions and reference patterns to determine constraints that can be placed on data values

at various points of executing the source program.

Data Flow Anomaly. A sequence of the events reference (r), definition (d), and use (u) of

variables in a program that is either erroneous in itself or often symptomatic of an error.

Data Flow Testing. A testing technique which provides a set of successively more strin-

gent path selection criteria that guide the selection of test data to examine the relationships

between variable definitions and variable uses.

Debugger. A software tool intended to assist the user in software fault localization and, po-

tentially, fault correction.

Debugging. The process of correcting syntactic and logical faults detected during testing.

Debugging shares with testing certain techniques and strategies, but differs in its usual ad

hoc application and local scope.

Decision-To-Decision Path. A sequence of nodes on the control graph that starts at the

program entry point or at a decision node, terminates with the program exit or a decision

node, and has no decision node in between.

Directed Graph. Consists of a set of nodes interconnected with oriented arcs. An arbitrary

directed graph (digraph) may have many entry nodes and many exit nodes. A program di-

graph has only one entry and one exit. 0

C-4

Glossary

Driver. A software module that invokes and, perhaps, controls and monitors the execution

of one or more other software modules.

Dynamic Analysis. The process of evaluating a system or component based on its behavior

during execution.

Emulator. A device, computer program, or system that accepts the same inputs and pro-

duces the same outputs as a given system.

Entry Point. A point in a software module at which execution of the module can begin.

Equivalence Class Partitioning. A test data selection technique based on consideration of

partitioning the input domain of a program into a finite number of equivalence classes such

that (1) a test of a representative value of each class is equivalent to a test of any other value

and (2) each test case should invoke as many different input conditions as possible in order

to minimize the total number of test cases necessary.

Error. (1) A discrepancy between a computed, observed, or measured value or condition

and the true, specified, or theoretically correct value or condition. (2) A mental mistake

made by a programmer which may result in a program fault.

Error Guessing. A test data selection technique. The selection criteria is to pick values that

seem likely to cause failures.

Error Seeding. The process of intentionally adding known faults to those already in a com-

puter program for the purpose of monitoring the rate of detection and removal, and estimat-

ing the number of faults remaining in the program.

Essential Knots. A measure of unstructuredness based on control flow knots.

Essential Paths. Program paths that must be executed to achieve 100% coverage.

Exception. An event that causes suspension of normal program execution.

Executable Specification. A specification which is given in a sufficiently formal notation

to allow its execution by a computer.

Executable Statement. A statement in a module which is executable in the sense that it

produces object code instructions.

C-5

Glossary

Execution Time. (1) The amount of actual or central processor time used in executing a

program. (2) The period of time during which a program is executing.

Failure. The inability of a system or system component to perform a required function

within specified limits. A failure may be produced when a fault is encountered.

Failure Intensity. Failures per unit of time, the derivative with respect to time of the mean

value function of failures.

Failure Intensity Decay Parameter. In the logarithmic Poisson execution time model, the

parameter that represents the rate of exponential decay of the failure intensity as a function

of mean failures experienced.

Failure Severity. Classification of a failure by its operational impact.

Fault. A manifestation of an error in software. A fault, if encountered, may cause a failure.

0
Fault Tree Analysis. A form of safety analysis that assesses hardware safety to provide

failure statistics and sensitivity analyses which indicate the possible effect of critical fail-

ures.

Flowchart. A control flow diagram in which suitably annotated geometrical figures are

used to represent operations, data, or equipment, and arrows are used to indicate the se-

quential flow from one to another.

Formal Specification. In proof of correctness, a description in a formal language of the ex-

ternally visible behavior of a system or system component. Generally, a specification writ-

ten and approved in accordance with established standards.

Formal Verification. See Verification.
0

Function. (1) A specific purpose of an entity or its characteristic action. (2) A subprogram

that is invoked during the evaluation of an expression in which its name appears and that

returns a value to the point of invocation.

Functional Specification. A set of behavioral and performance requirements which, in ag-

gregate, determine the functional properties of a software system.

Function Points. Function points measure software by quantifying the functionality pro-

vided external to itself. It is based primarily on logical design.

C-6

Glossary

Functional Testing. Testing that ignores the internal mechanism of a system or component

and focuses solely on the outputs generated in response to selected inputs and execution

conditions.

Generic Component. A generic component is one which can be instantiated in a number

of predefined ways so that each occurrence of the component can be tailored to suit a par-

ticular usage. For example, a generic component which provides a set of queue handling

routines might be designed so that it can be instantiated to operate on queues with different

message formats.

Global Assertion. Those assertions which are valid for the whole program being validated.

Graph. See Directed Graph.

Incident. During testing, any event that occurs during the execution of a software test that

requires investigation.

Incremental Analysis. Occurs when (partial) analysis may be performed on an incomplete

product to allow early feedback on the development of that product.

Incremental Development. A software development technique in which requirements

definition, design, implementation, and testing occur in an overlapping, iterative manner,

resulting in an incremental completion of the overall software product.

Independent Verification and Validation (IV&V). Verification and validation of a soft-

ware product by an organization that is both technically, managerially, and financially sep-

arate from the organization responsible for developing the product. See Validation and

Verification.

Infeasible Path. A sequence of program statements that can never be executed.

Information Flow Analysis. A study of the interdependencies of program variables. A

given variable A will depend on another variable B at a specific point in the program if the

path taken in reaching that point is such that the value of A depends on the value of B.

Inspection. A static analysis technique that relies on visual examination of development

products to detect errors, violations of development standards, and other problems. Types

include code inspections and design inspections.

C-7

Glossary

Instruction Block. A sequence of statements where execution of the first statement neces-

sarily leads to execution of the last statement.

Instrumentation. Devices or instructions installed or inserted into hardware or software to

monitor the operation of a system or component.

Integration. The process of combining software elements, hardware elements, or both into

an overall system.

Integration Testing. Testing in which software components, hardware components, or

both are combined and tested to evaluate the interaction between them.

Intervals. Derived from a directed graph, an interval is defined as the following: An inter-
val with head node H is the subgraph containing H plus any nodes that can be reached on

a path from H, and which have all their immediate predecessors in the interval. First-order

intervals give a count of the intervals that partition the graph into a set of disjoint compo-

nents. The maximum order is the number of interval iterations required to reduce a graph

to a single node.

Invocation. The transfer of control to an entity causing it to be activated.

Linear Code Sequence and Jump (LCSAJ) Program Units. Sections of the code

through which the flow of control proceeds sequentially until terminated by a jump in the
control flow.

Logarithmic Poisson Execution Time Model. A software reliability model in which the S

failure process is assumed to be a nonhomogeneous Poisson process with exponentially de-

creasing failure intensity.

Maintainability. (1) The probability that specified unavailable functions can be repaired

or restored to their operational state in the system's intended maintenance environment dur-

ing a specified period of time. (2) The average effort to locate and fix a software failure.

Metric. A quantitative measure of the degree to which a system, component, or process

possesses a given attribute. 0

Module. A program unit that is discrete and identifiable with respect to compiling, com-

bining with other units, and loading.

C-8

Glossary

Node. In a diagram, a point, circle, or other geometric figure used to represent a state, event,

or other item of interest.

Operational Testing. Testing performed by the end user on software in its normal operat-

ing environment.

Parse. To determine the syntactic structure of a language unit by decomposing it into more

elementary subunits and establishing the relationships among the subunits. For example, to

decompose blocks into statements, statements into expressions, expressions into operators

and operands.

Path. In software engineering, a sequence of instructions that may be performed in the ex-

ecution of a computer program.

Path Analysis. Analysis of a computer program to identify all possible paths through the

program, to detect incomplete paths, or to discover portions of the program that are not on

any path.

Path Testing. Testing designed to execute all or selected paths through a computer pro-

gram. (Often paths through the program are grouped into a finite set of classes: one path

from each class is tested.)

Performance. The degree to which a system or component accomplishes its designated

functions within given constraints, such as speed, accuracy, or memory usage.

Portability. The ease with which a system or component can be transferred from one hard-

ware or software environment to another.

Pretty Printing. The use of indentation, blank lines, and other visual clues to show the log-

ical structure of a program.

Program Correctness. (1) The extent to which software is free from design defects and

coding defects; that is, fault free. (2) Extent to which the software satisfies its specifications

and fulfills the user's mission objects. (3) If for all initial states that belong to the set of le-

gitimate initial states, the program P terminates with a final state that belongs to the set of

legitimate final states, then program P exhibits program correctness.

Prototype. A limited implementation of a system built in order to capture or validate some

aspects of a system design. The fundamental concept is that a prototype of a system is more

C-9

Glossary

cheaply or more quickly constructed than the actual system. Hence, some aspects of func-

tion or performance are typically sacrificed.

Pseudo Code. A combination of programming language constructs and natural language

used to express a computer program design.

Quality. (1) The degree to which a system, component, or process meets specified require-

ments. (2) The degree to which a system, component, or process meets customer or user

needs or expectations.

Quality Assurance. (1) A planned and systematic pattern of all actions necessary to pro-

vide adequate confidence that the item or product conforms to established technical re-

quirements. (2) A set of activities designed to evaluate the process by which products are

developed or manufactured.

Random Testing. An essentially black-box testing approach in which a program is tested

by randomly choosing a subset of all possible input values. The distribution may be arbi-

trary or may attempt to accurately reflect the distribution of inputs in the application envi-
ronment.

Regression Testing: Selective retesting to detect faults introduced during modification of

a system or system component, to verify that modifications have not caused unintended ad-
verse effects, and verify that a modified system or system component still meets its speci-

fied requirements.

Reliability. The ability of a system or component to perform its required functions under

stated conditions for a specified period of time.

Reliability Model. A model used for predicting, estimating, or assessing reliability.
0

Reliability Growth. The improvement in reliability that results from correction of faults.

Requirement. A condition or capability that must be met or possessed by a system or sys-

tem component to satisfy a contract, standard, specification, or other formally imposed doc-
ument. The set of all requirements forms the basis for subsequent development of the

system or system component.

C-10

Glossary

Requirements Specification. A document that specifies the requirements for a system or

component. Typically included are functional requirements, performance requirements, in-

terface requirements, design requirements, and development standards.

Retesting. See Regression Testing.

Safety. The extent to which the program is protected from causing a specified set of haz-

ards.

Scope. The range within which an identified unit displays itself. Scope of activity refers to

the boundaries within which a data structure or program element remains an integral unit.

Scope of control refers to the submodules in a program that potentially may execute if con-

trol is given to a cited module. Scope of error denotes the set of submodules that are poten-

tially affected by the detection of a fault in a cited module.

Segment. A (logical) segment, or decision-to-decision path, is the set of statements in a

module which are executed as a result of the evaluation of some predicate within the mod-

ule. It begins at an entry or decision statement and ends at a decision statement or exit, and

should be thought of as including the sensing of the outcome of a conditional operation and

the subsequent statement execution up to and including the computation of the next predi-

cate value, but not including its evaluation.

Self-Checking Software. Software which makes an explicit attempt to determine its own

correctness and to proceed accordingly.

Simulation. (1) A model that behaves or operates like a system when provided a set of con-

trolled inputs. (2) The process of developing or using a model as in (1).

Sizing. The process of estimating the amount of computer storage or number of source lines

required for a software system or component.

Software. Computer programs, procedures, rules, and any associated documentation per-

taining to the operation of a computer system.

Software Fault Tree Analysis. A form of fault tree analysis used for analyzing the safety

of software designs or code.

Software Quality. (1) The totality of features and characteristics of a software product that

bear on its ability to satisfy given needs; for example, conform to specifications. (2) The

C-Il

Glossary 0

degree to which software possesses a desired combination of attributes. (3) The composite

characteristics of software that determine the degree to which the software in use will meet

the expectations of the customer.

Software Reliability. (I) The probability that software will not cause the failure of the sys-

tem for a specified time under specified conditions. The probability is a function of the in-

puts to and use of the system as well as a function of the existence of faults in the software.

The inputs to the system determine whether existing faults, if any, are encountered. (2) The

ability of a program to perform a required function under stated conditions for a stated pe-

riod of time.

Software Reliability Model. A model used for predicting, estimating, or assessing soft- 0
ware reliability.

Software Science. Software Science measures the complexity of a software module by cal-

culations based on the incidence of references to operators and operands. The fundamental

measures calculated are program vocabulary, length, and volume.

Specification. A document that prescribes in a complete, precise, verifiable manner, the re-

quirements, design, behavior, or other characteristics of a system or system component,

and, often, the procedures for determining whether these provisions have been satisfied. 0

Specification Language. A language, often a machine-processable combination of natural

and formal language, used to specify the requirements, design, behavior, or other charac-

teristics of a system or system component. 0

Statement Testing. Testing designed to execute each statement in a computer program.

Static Analyzer. A software tool that aids in the evaluation of a computer program without

executing the program. Examples include syntax checkers, compilers, cross-reference gen-

erators, standards enforcers, and flowcharters.

Stress Testing. Testing conducted to evaluate a system or component at or beyond the lim-

its of its specified requirements.

Structural Testing. Testing that takes into account the internal mechanism of a system or

component. Types include branch testing, path testing, and statement testing.

C-12

Glossary

Structured Programming. A well-defined software development technique that incorpo-

rates top-down design and implementation and strict use of structured program control con-

structs.

Stub. A skeletal or special-purpose implementation of a software module, used to develop

or test a module that calls or is otherwise dependent upon it.

Symbolic Evaluation. See Symbolic Execution.

Symbolic Execution. A software analysis technique in which program execution is simu-
lated using symbols, such as variable names, rather than actual values for input data, and

mathematical expressions involving these symbols.

System Testing. Testing conducted on a complete, integrated system to evaluate the sys-

tem's compliance with its specified requirements.

Test. A unit test of a single module consists of (1) a collection of settings for the input space

of the module, and (2) exactly one invocation of the module. A unit test may or may not

include the effect of other modules which are invoked by the module undergoing testing.

Testbed. An environment containing the hardware, instrumentation, simulators, software

tools, and other support elements needed to conduct a test.

Test Case. A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify compliance

with a specific requirements.

Test Data. See Test Case.

Test Data Generator. A software tool that accepts as input source code, test criteria, spec-

ifications, or data structure definitions; uses these inputs to generate test input data; and,

sometimes, determines the expected results.

Test Driver. A program that directs the execution of another program against a collection

of test data sets. Usually the test driver also records and organizes the output generated as

the tests are run.

Test Management. Management procedures designed to control in an ordered way a large

and evolving amount of information on system features to be tested, on system implemen-

tation plans, and on test results.

C-13

Glossary

Test Path. The specific (sequence) set of segments that is traversed as the result of a unit

test operation on a set of test data. A module can have many test paths.

Test Plan. A document prescribing the approach to be taken for intended testing activities.

The plan typically identifies the items to be tested, the testing to be performed, test sched-

ules, personnel requirements, reporting requirements, evaluation criteria, and any risks re-

quiring contingency planning.

Test Repeatability. An attribute of a test indicating whether the same results are produced

each time the test is conducted.

Test Log. A chronological record of all relevant details about the execution of a test.

Testability. (1) The degree to which a system or component facilitates the establishment

of test criteria and the performance of tests to determine whether these criteria have been

met. (2) The degree to which a requirement is stated in terms that permit establishment of

test criteria and performance of tests to determine whether those criteria have been met.

Testing. The process of exercising or evaluating a system or system component by manual

or automated means to verify that it satisfies specified requirements or to identify differ-

ences between expected and actual results.

Timing Analyzer. A software tool that estimates or measures the execution time of a com-

puter program or portion of a computer program, either by summing up the execution times

of the instructions along the specified paths or by inserting probes at specified points in the

program and measuring the execution time between probes.

Top-Down Testing. A systematic testing philosophy which seeks to first test those mod-

ules at the top of the invocation structure.

Trace. A record of the execution of a computer program, showing the sequences of instruc-
tions executed, the names and values of variables, or both.

Traceability. The degree to which a relationship can be established between two or more

products of the development process, especially products having a predecessor-successor

or master-subordinate relationship to one another; for example, the degree to which the re-

quirements and design of a given software component match.

-

C- 14

Glossary

Unit. A separately testable element specified in the design of a computer software compo-

nent.0
Unit Testing. Testing of individual hardware or software units or groups of related units.

See also Integration Testing and System Testing.

Unreachability. A statement (or segment) is unreachable if there is no logically obtainable

set of input-space settings which can cause the statement (or segment) to be traversed.

Validation. The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements.

Verification. (1) The process of evaluating a system or component to determine whether

the products of a given development phase satisfy the conditions imposed at the start of that

phase. (2) Formal proof of correctness.

C-15

Glossary

ENOC- 16

